Skip to main content

Capillary Electrophoresis of DNA Fragments with Replaceable Low-Gelling Agarose Gels

  • Protocol
Capillary Electrophoresis of Nucleic Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 162))

  • 670 Accesses

Abstract

Capillary electrophoresis (CE) in all its various modes is routinely used in the area of life science for the analysis of wide spectra of species ranging from small inorganic/ organic molecules to multi-subunit proteins and mega-size DNA (1). Capillary gel electrophoresis (CGE) is the counterpart of gel electrophoresis in the slab-gel format. Similar molecules are analyzed with CGE as with slab gels, like SDS-protein complexes and single-stranded/duplex DNA. Since these analytes have similar mass-overcharge ratio and therefore similar mobilities (for ≥10 bases in length, depending on pH and base composition) they can not be separated in a carrier-free system like capillary free-zone electrophoresis (2), although some exceptions are known (3,4). A size-sieving medium is therefore necessary to impart hydrodynamic friction on the migrating molecules for their separation. The constraint of the capillary format also acts to prevent convection, whereas in the slab-gel format the sieving matrix plays this role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Handbook of Capillary Electrophoresis (1997), (Landers, J. P., ed.), 2nd ed., CRC Press, London and New York.

    Google Scholar 

  2. Olivera B. M., Baine P., and Davidson N. (1964) Electrophoresis of the nucleic acids. Biopolymers 2, 245–257.

    Article  CAS  Google Scholar 

  3. Hamdan I. I., Skellern G. G., and Waigh R. D. (1998) Separation of pd(GC)12 from pd(AT)12 by free solution capillary electrophoresis. J. Chromatogr. A 806, 165–168.

    Article  PubMed  CAS  Google Scholar 

  4. Iki N., Kim Y., and Yeung E. S. (1996) Electrostatic and hydrodynamic separation of DNA fragments in capillary tubes. Anal. Chem. 68, 4321–4325.

    Article  CAS  Google Scholar 

  5. Wehr T., Zhu M., and Mao D. T. (2001) Sieving matrix selection, in Capillary Electrophoresis of Nucleic Acids, Vol. 1 (Mitchelson K. R. and Cheng J., eds.), Humana Press, Totowa, NJ, pp. 167–187.

    Google Scholar 

  6. Hjertén S. (1983) High-performance electrophoresis: The electrophoretic counterpart of high-performance liquid chromatography. J. Chromatogr. 270, 1–6.

    Article  Google Scholar 

  7. Cohen A. S., Najarian D. R., Paulus A., Guttman A., Smith J. A., and Karger B. L. (1988) Rapid separation and purification of oligonucleotides by high-performance capillary gel electrophoresis. Proc. Natl. Acad. Sci. USA 85, 9660–9663.

    Article  PubMed  CAS  Google Scholar 

  8. Yin H.-F., Lux J. A., and Schomburg G. (1990) Production of polyacrylamide gel filled capillaries for capillary gel electrophoresis (CGE): influence of capillary surface pretreatment on performance and stability. J. High Res. Chromatogr. 13, 624–627.

    Article  CAS  Google Scholar 

  9. Guttman A. and Cooke N. (1991) Effect of temperature on the separation of DNA restriction fragments in capillary gel electrophoresis. J. Chromatogr. 559, 285–294.

    Article  CAS  Google Scholar 

  10. Nakatani M., Skibukawa A., and Nakagawa T. (1994) Preparation and characterization of a stable polyacrylamide sieving matrix-filled capillary for high-performance capillary electrophoresis. J. Chromatogr. A 661, 315–321.

    Article  PubMed  CAS  Google Scholar 

  11. Lindberg P., Stjernström M., and Roeraade J. (1997) Gel electrophoresis of DNA fragments in narrow-bore capillaries. Electrophoresis 18, 1873–1979.

    Google Scholar 

  12. Gelfi C. and Righetti P. G. (1981) Polymerization kinetics of polyacrylamide gels, II. Effect of temperature. Electrophoresis 2, 220–228.

    Article  CAS  Google Scholar 

  13. Caglio S. and Righetti P. G. (1993) On the pH dependence of polymerization efficiency. Electrophoresis 14, 554–558.

    Article  PubMed  CAS  Google Scholar 

  14. Bio-Rad Laboratories; acrylamide polymerization-a practical approach (1987) Bulletin 1156.

    Google Scholar 

  15. Zhu M.-D., Hansen D. L., Burd S., and Gannon F. (1989) Factors affecting free zone electrophoresis and isoelectric focusing in capillary electrophoresis. J. Chromatogr. 480, 311–319.

    Article  CAS  Google Scholar 

  16. Baba Y., Ishimaru N., Samata K., and Tsuhako M. (1993) High-resolution separation of DNA fragments by capillary electrophoresis in cellulose derivative solutions. J. Chromatogr. A 653, 329–335.

    Article  PubMed  CAS  Google Scholar 

  17. Kleemib M. H., Gilges M., and Schomburg G. (1993) Capillary electrophoresis of DNA restriction fragments with solutions of entangled polymers. Electrophoresis 14, 515–522.

    Article  Google Scholar 

  18. Barron A. E., Sunada W. M., and Blanch H. W. (1995) The use of coated and uncoated capillaries for the electrophoretic separation of DNA in dilute polymer solutions. Electrophoresis 16, 64–74.

    Article  PubMed  CAS  Google Scholar 

  19. Dolnik V. and Novotny M. (1992) Capillary Electrophoresis of DNA fragments in entangled polymer solutions: A study of separation variables. J. Microcol. Sep. 4, 515–519.

    Article  Google Scholar 

  20. Izumi T., Yamaguchi M., Yoneda K., Isobe T., Okuyama T., and Shinoda T. (1993) Use of glucomannan for the separation of DNA fragments by capillary electrophoresis. J. Chromatogr. A 652, 41–46.

    Article  PubMed  CAS  Google Scholar 

  21. Heller C. (1998) Finding a universal low-viscosity polymer for DNA separation. Electrophoresis 19, 1691–1698.

    Article  PubMed  CAS  Google Scholar 

  22. Kleparnik K., Mala Z., Doskar J., Rosypal S., and Bocek P. (1995) An improvment of restriction analysis of bacteriophage DNA using capillary electrophoresis in agarose solution. Electrophoresis 16, 366–376.

    Article  PubMed  CAS  Google Scholar 

  23. Fung E. N., Pang H.-M., and Yeung E. S. (1998) Fast DNA separations using poly(ethylene oxide) in non-denaturing medium with temperature programming. J. Chromatogr. 806, 157–164.

    Article  CAS  Google Scholar 

  24. Gao Q. and Yeung E. S. (1998) A matrix for DNA separation: Genotyping and sequencing using poly(vinylpyrrolidone) solution in uncoated capillaries. Anal. Chem. 70, 1382–1388.

    Article  PubMed  CAS  Google Scholar 

  25. Rill R. L., Liu Y., Van Winkle D. H., and Locke B. R. (1998) Pluronic copolymer liquid crystals: unique, replaceable media for capillary gel electrophoresis. J. Chromatogr. A 817, 287–295.

    Article  PubMed  CAS  Google Scholar 

  26. Rill R. L. and Liu Y. (2001) DNA separation by capillary electrophoroesis in lyotropic polymer liquid crystals, in Capillary Electrophoresis of Nucleic Acids, Vol. 1 (Mitchelson K. R. and Cheng J., eds.), Humana Press, Totowa, NJ, pp. 203–213.

    Google Scholar 

  27. Chiari M. and Righetti P. G. (1995) New types of separation matrices for electrophoresis. Electrophoresis 16, 1815–1829.

    Article  PubMed  CAS  Google Scholar 

  28. Chiari M. and Melis A. (1998) Low viscosity DNA sieving matrices for capillary electrophoresis. Trends Anal. Chem. 17, 623–632.

    Article  CAS  Google Scholar 

  29. Grossman P. D. and Soane D. S. (1991) Capillary electrophoresis in entangled polymer solutions J. Chromatogr. 559, 257–266.

    Article  PubMed  CAS  Google Scholar 

  30. Hjertén S. (1985) High-performance electrophoresis: Elimination of electroendosmosis and solute adsorption. J. Chromatogr. 347, 191–198.

    Article  Google Scholar 

  31. Chiari M. and Cretich M. (2001) Capillary coatings: choices for capillary electrophoresis of DNA, in Capillary Electrophoresis of Nucleic Acids, Vol. 1 (Mitchelson K. R. and Cheng J., eds.), Humana Press, Totowa, NJ, pp. 125–138.

    Google Scholar 

  32. Sumita C., Baba Y., Hide K., Ishimaru N., Samata K., Tanaka A., and Tsuhako M. (1994) Comparative study of non-porous anion-exchange chromatography, capillary gel electrophoresis and capillary electrophoresis in polymer solutions in the separation of DNA restriction fragments. J. Chromatogr. A 661, 297–303.

    Article  CAS  Google Scholar 

  33. Bae Y. C. and Soane D. J. (1993) Polymeric separation media for electrophoresis: cross-linked systems or entangled solutions. J. Chromatogr. A 652, 17–22.

    Article  CAS  Google Scholar 

  34. Kamahori M. and Kambara H. (1996) Characteristics of single-stranded DNA separation by capillary gel electrophoresis. Electrophoresis 17, 1476–1484.

    Article  PubMed  CAS  Google Scholar 

  35. Hjertén S., Srichaiyo T., and Palm A. (1994) UV-transparent, replaceable agarose gels for molecular-sieve (capillary) electrophoresis of proteins and nucleic acids. Biomed. Chromatogr. 8, 73–76.

    Article  PubMed  Google Scholar 

  36. Chen N., Wu L., Palm A., Srichaiyo T., and Hjerten S. (1996) High-performance field inversion capillary electrophoresis of 0.1–23 kbp DNA fragments with low-gelling, replaceable agarose gels. Electrophoresis 17, 1443–1450.

    Article  PubMed  CAS  Google Scholar 

  37. Palm A. and Hjertén S. (1996) The resolution of DNA fragments in capillary electrophoresis in replaceable agarose gels. J. Capillary Electrophor. 3, 173–179.

    PubMed  CAS  Google Scholar 

  38. Lux J. A., Häusig U., and Schomburg G. (1990) Production of windows in fused silica capillaries for in-column detection of UV-absorption or fluorescence in capillary electrophoresis or HPLC. J. High Res. Chromatogr. 13, 373–374.

    Article  CAS  Google Scholar 

  39. Hjertén S. (1990) Zone broadening in electrophoresis with special reference to high-performance electrophoresis in capillaries: An interplay between theory and practice. Electrophoresis 11, 665–690.

    Article  PubMed  Google Scholar 

  40. Slater G. W., Mayer P., and Drouin G. (1996) High resolution separation and analysis of biological macromolecules, in Methods in Enzymology, Vol. 270 (Karger B. L. and Hancock W. S., eds.), Academic Press, London and New York, pp. 272–295.

    Google Scholar 

  41. Hamelin C. and Yelle J. (1990) Gel and buffer effects on the migration of DNA molecules in agarose. Appl. Theor. Electrophor. 1, 225–231.

    PubMed  CAS  Google Scholar 

  42. Peats S., Nochumson S., and Kirkpatrick F. H. (1986) Effects of borate on agarose structure. Biophys. J. 49, 91a.

    Article  Google Scholar 

  43. Zernik J. and Lichtler A. (1987) Borate-buffer-related effects on the electrophoretic mobility of linear DNA fragments in agarose. BioTechniques 5, 411–413.

    Google Scholar 

  44. Mitchelson K. R. and Cheng J. (2001) Capillary electrophoresis with glycerol as an additive, in Capillary Electrophoresis of Nucleic Acids, Vol. 1 (Mitchelson K. R. and Cheng J., eds.), Humana Press, Totowa, NJ, pp. 259–277.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Palm, A.K. (2001). Capillary Electrophoresis of DNA Fragments with Replaceable Low-Gelling Agarose Gels. In: Mitchelson, K.R., Cheng, J. (eds) Capillary Electrophoresis of Nucleic Acids. Methods in Molecular Biology, vol 162. Humana Press. https://doi.org/10.1385/1-59259-055-1:279

Download citation

  • DOI: https://doi.org/10.1385/1-59259-055-1:279

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-779-3

  • Online ISBN: 978-1-59259-055-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics