Skip to main content

DNA Separation Mechanisms During Electrophoresis

  • Protocol
Capillary Electrophoresis of Nucleic Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 162))

Abstract

This chapter describes the separation mechanisms used for DNA electrophoresis. The focus is on the concepts that may help the researcher understand the methodology, read the theoretical literature, analyze experimental data, identify the relevant separation regimes, and/or design optimization strategies. But first, let’s look at some key definitions. Since capillary electrophoresis (CE) is a “finish line” technique, the mobility μ(M) and the velocity v(M) of a molecule of size M (in bases or base pairs) in an electric field E are generally defined as: μ(M)= [v(M)]/E = L/[t(M)E] in which, L is the distance migrated during the elution time t(M). Clearly, this definition is valid only if v(M) is constant during the run. This requires time-independent and uniform (i.e., along the capillary) conditions (e.g., field, temperature, and so on), something that is rarely checked and is rather unlikely. This definition may thus lead, in some cases, to dubious conclusions (1). Successful separation of molecular sizes M1 and M2 requires the time spacing t1–t2 between these electrophoresis peaks to be larger than their full (time) width at half-maximum (FWHM), w1,2. A useful measure of the resolution is thus given by the separation factor S, which gives the smallest resolvable size difference: S = [(w1 + w2) × (M2 −M1)]/[2 × (t1 − t2)]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Desruisseaux C., Slater G. W., and Drouin G. (1998) The gel edge electric field gradients in denaturing polyacrylamide gel electrophoresis. Electrophoresis 19, 627–634.

    Article  PubMed  CAS  Google Scholar 

  2. Grossman P. D. (1992) Factors affecting the performance of capillary electrophoresis separations: Joule heating, electroosmosis, and zone dispersion, in Capillary Electrophoresis Theory and Practice (Grossman P. D. and Colburn J. C., eds.), Academic Press San Diego, pp. 3–43.

    Google Scholar 

  3. Meistermann L. and Tinland B. (1998) Band broadening in gel electrophoresis of DNA: measurements of longitudinal and transverse dispersion coefficients. Phys. Rev. E 58, 4801–4806.

    Article  CAS  Google Scholar 

  4. Issaq H. J. (2001) Parameters affecting capillary electrophoretic separation of DNA, in Capillary Electrophoresis of nucleic Acids, Vol. 1 (Mitchelson K. R. and Cheng J., eds.), Humana Press Totowa, NJ, pp. 189–199.

    Google Scholar 

  5. Iki n., Kim Y., and Yeung E. S. (1996) Electrostatic and hydrodynamic separation of DNA fragments in capillary tubes. Anal. Chem. 68, 4321–4325.

    Article  CAS  Google Scholar 

  6. Heller C., Slater G. W., Mayer P., Dovichi n. J., Pinto D., Viovy J.-L., and Drouin G. (1998) Free-solution electrophoresis of DNA. J. Chromatogr. A 806, 113–121.

    Article  CAS  Google Scholar 

  7. Ren H., Karger A. E., Oaks F., Menchen S., Slater G. W., and Drouin G. (1999) DNA sequencing using end-labeled free-solution electrophoresis. Electrophoresis, 20, 2501–2509.

    Article  PubMed  CAS  Google Scholar 

  8. Ulanovsky L., Drouin G., and Gilbert W. (1990) DnA trapping electrophoresis. Nature 343, 190–192.

    Article  PubMed  CAS  Google Scholar 

  9. Desruisseaux C., Slater G. W., and Drouin G. (1998) On using DNA trapping electrophoresis to increase the resolution of DnA sequencing gels. Macromolecules 31, 6499–6505.

    Article  CAS  Google Scholar 

  10. Slater G. W., Desruisseaux C., Villeneuve C., Guo H. L., and Drouin G. (1995) Trapping electrophoresis of end-labeled DNA: An analytical model for mobility and diffusion. Electrophoresis 16, 704–712.

    Article  PubMed  CAS  Google Scholar 

  11. Griess G. A., and Serwer P. (1998) Gel electrophoretic ratcheting for the fractionation of DnA-protein complexes. Biophys. J. 74, A71.

    Google Scholar 

  12. Desruisseaux C., Slater G. W., and Kist T. B. L. (1998) Trapping electrophoresis and ratchets: a theoretical study for DNA-protein complexes. Biophys. J. 75, 1228–1236.

    Article  PubMed  CAS  Google Scholar 

  13. Barron A. E., Blanch H. W., and Soane D. S. (1994) A transient entanglement coupling mechanism for DnA separation by capillary electrophoresis in ultra-dilute polymer solutions. Electrophoresis 15, 597–615.

    Article  PubMed  CAS  Google Scholar 

  14. Hubert S. J., Slater G. W., and Viovy J.-L. (1996) Theory of capillary electrophoresis separation of DNA using ultra-dilute polymer solutions. Macromolecules 29, 1006–1009.

    Article  CAS  Google Scholar 

  15. Bunz A. P., Barron A. E., Prausnitz J. M., and Blanch H. W. (1996) Capillary electrophoretic separation of DnA restriction fragments in mixtures of low-and high-molecular-weight hydroxyethylcellulose. Ind. Eng. Chem. 35, 2900–2908.

    Article  Google Scholar 

  16. Kim Y. and Morris M. D. (1995) Rapid pulsed-field capillary electrophoretic separation of megabase nucleic acids. Anal. Chem. 67, 784–786.

    Article  PubMed  CAS  Google Scholar 

  17. Rodbard D. and Chrambach A. (1970) Unified theory for gel electrophoresis and gel filtration. Proc. nat. Acad. Sci. USA 65, 970–977.

    Article  PubMed  CAS  Google Scholar 

  18. Ogston A. G. (1958) The spaces in a uniform random suspension of fibers. Trans. Faraday Soc. 54, 1754–1757.

    Article  Google Scholar 

  19. Mercier J.-F. and Slater G. W. (1998) An exactly solvable Ogston model of gel electrophoresis IV: Sieving through periodic three-dimensional gels. Electrophoresis 19, 1560–1565.

    Article  PubMed  CAS  Google Scholar 

  20. de Gennes P. G. (1979) Scaling Concepts in Polymer Physics. Cornell University Press NY.

    Google Scholar 

  21. Doi M. and Edwards S. F. (1986) The Theory of Polymer Dynamics. Oxford University Press NY.

    Google Scholar 

  22. Duke T. A. J., Viovy J.-L., and Semenov A. N. (1994) Electrophoretic mobility of DNA in gels I: new biased reptation theory including fluctuations. Biopolymers 34, 239–248.

    Article  CAS  Google Scholar 

  23. Semenov A. n., Duke T. A. J., and Viovy J.-L. (1995) Gel electrophoresis of DNA in moderate fields: the effect of fluctuations. Phys. Rev. E 51, 1520–1537.

    Article  CAS  Google Scholar 

  24. Heller C., Duke T. A. J., and Viovy J.-L. (1994) Electrophoretic mobility of DNA in gels II: systematic study in agarose gels. Biopolymers 34, 249–259.

    Article  CAS  Google Scholar 

  25. Heller C. (2001) Influence of polymer concentration and polymer composition on capillary electrophoresis of DNA, in Capillary Electrophoresis of nucleic Acids, Vol. 1 (Mitchelson K. R. and Cheng J., eds.), Humana Press Totowa, NJ, pp. 111–123.

    Google Scholar 

  26. Viovy J.-L. (2001) Mechanisms of poly electrolyte gel electrophoresis. Submitted for publication. This is a comprehensive review by one of the leading researcher in this field.

    Google Scholar 

  27. Slater G. W. (1997) Electrophoresis theories, in Analysis of nucleic Acids by Capillary Electrophoresis (Heller C., ed.), Vieweg and Son Wiesbaden, pp. 24–66.

    Google Scholar 

  28. Burmeister M., and Ulanovsky L., eds. (1992) Pulsed-Field Gel Electrophoresis: Protocols, Methods and Theories, Vol. 12. Humana Press Totowa, NJ, pp. 1–467.

    Google Scholar 

  29. Noolandi J., Rousseau J., Slater G. W., Turmel C., and Lalande M. (1987) Self-trapping and anomalous dispersion of DnA in electrophoresis. Phys. Rev. Lett. 58, 2428–2431.

    Article  PubMed  CAS  Google Scholar 

  30. Rousseau J., Drouin G., and Slater G. W. (1997) Entropic trapping of DNA during gel electrophoresis: effect of field intensity and gel concentration. Phys. Rev. Lett. 79, 1945–1948.

    Article  CAS  Google Scholar 

  31. Semenov A. n. and Joanny J.-F. (1997) Formation of hairpins and band broadening in gel electrophoresis of DNA. Phys. Rev. E 55, 789–799.

    Article  CAS  Google Scholar 

  32. Arvanitidou E. and Hoagland D. (1991) Chain-length dependence of the electrophoretic mobility in random gels. Phys. Rev. Lett. 67, 1464–1466.

    Article  PubMed  CAS  Google Scholar 

  33. Smisek D. L. and Hoagland D. A. (1990) Electrophoresis of flexible macromolecules: evidence of a new mode of transport in gels. Science 248, 1221–1223.

    Article  PubMed  CAS  Google Scholar 

  34. Cottet H., Gareil P., and Viovy J.-L. (1998) The effect of blob size and network dynamics on the size-based separation of polystyrenesulfonates by capillary electrophoresis in the presence of entangled polymer solutions. Electrophoresis 19, 2151–2162.

    Article  PubMed  CAS  Google Scholar 

  35. Mitnik L., Salomé L., Viovy J.-L., and Heller C. (1995) Systematic study of field and concentration effects in capillary electrophoresis of DNA in polymer solutions. J. Chromatogr. A 710, 309–321.

    Article  PubMed  CAS  Google Scholar 

  36. Viovy J.-L. and Heller C. (1996) Principles of size-based separations in polymer solutions, in Capillary Electrophoresis in Analytical Biotechnology (Righetti P. G., ed.), CRC Press Boca Raton, pp. 477–508.

    Google Scholar 

  37. Ueda M., Oana H., Baba Y., Doi M., and Yoshikawa K. (1998) Electrophoresis of long DNA molecules in linear polyacrylamide solutions. Biophys. Chem. 71, 113–123.

    Article  PubMed  CAS  Google Scholar 

  38. Slater G. W., Kist T.B.L., Ren H., and Drouin G. (1998) Recent Developments in DNA Electrophoretic Separations. Electrophoresis 19, 1525–1541.

    Article  PubMed  CAS  Google Scholar 

  39. Quesada M. A. (1997) Replaceable polymers in DNA sequencing by capillary electrophoresis. Curr. Opin. Biotech. 8, 82–93.

    Article  PubMed  CAS  Google Scholar 

  40. Quesada M. A. and Menchen S. (2001) Replaceable polymers for DNA sequencing by capillary electrophoresis, in Capillary Electrophoresis of nucleic Acids, Vol. 1 (Mitchelson K. R. and Cheng J., eds.), Humana Press Totowa, NJ, pp. 139–166.

    Google Scholar 

  41. Dovichi n. J. (1997) DNA sequencing by capillary electrophoresis. Electrophoresis 18, 2393–2399.

    Article  PubMed  CAS  Google Scholar 

  42. Dovichi N. J. and Zhang J.-Z. (2001) DNA sequencing by capillary array electrophoresis, in Capillary Electrophoresis of nucleic Acids, Vol. 1 (Mitchelson K. R. and Cheng J., eds.), Humana Press Totowa, NJ, pp. 85–94.

    Google Scholar 

  43. Barron A. E. and Blanch H. W. (1995) DNA separations by slab gel and capillary electrophoresis: theory and practice. Sep. Purif. Methods 24, 1–118.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Slater, G.W., Desruisseaux, C., Hubert, S.J. (2001). DNA Separation Mechanisms During Electrophoresis. In: Mitchelson, K.R., Cheng, J. (eds) Capillary Electrophoresis of Nucleic Acids. Methods in Molecular Biology, vol 162. Humana Press. https://doi.org/10.1385/1-59259-055-1:27

Download citation

  • DOI: https://doi.org/10.1385/1-59259-055-1:27

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-779-3

  • Online ISBN: 978-1-59259-055-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics