Capillary Electrophoresis of DNA Fragments with Replaceable Low-Gelling Agarose Gels

  • Anders K. Palm
Part of the Methods in Molecular Biology book series (MIMB, volume 162)


Capillary electrophoresis (CE) in all its various modes is routinely used in the area of life science for the analysis of wide spectra of species ranging from small inorganic/ organic molecules to multi-subunit proteins and mega-size DNA (1). Capillary gel electrophoresis (CGE) is the counterpart of gel electrophoresis in the slab-gel format. Similar molecules are analyzed with CGE as with slab gels, like SDS-protein complexes and single-stranded/duplex DNA. Since these analytes have similar mass-overcharge ratio and therefore similar mobilities (for ≥10 bases in length, depending on pH and base composition) they can not be separated in a carrier-free system like capillary free-zone electrophoresis (2), although some exceptions are known (3,4). A size-sieving medium is therefore necessary to impart hydrodynamic friction on the migrating molecules for their separation. The constraint of the capillary format also acts to prevent convection, whereas in the slab-gel format the sieving matrix plays this role.


Capillary Electrophoresis Migration Time Buffer Concentration Fragment Pair dsDNA Fragment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Handbook of Capillary Electrophoresis (1997), (Landers, J. P., ed.), 2nd ed., CRC Press, London and New York.Google Scholar
  2. 2.
    Olivera B. M., Baine P., and Davidson N. (1964) Electrophoresis of the nucleic acids. Biopolymers 2, 245–257.CrossRefGoogle Scholar
  3. 3.
    Hamdan I. I., Skellern G. G., and Waigh R. D. (1998) Separation of pd(GC)12 from pd(AT)12 by free solution capillary electrophoresis. J. Chromatogr. A 806, 165–168.PubMedCrossRefGoogle Scholar
  4. 4.
    Iki N., Kim Y., and Yeung E. S. (1996) Electrostatic and hydrodynamic separation of DNA fragments in capillary tubes. Anal. Chem. 68, 4321–4325.CrossRefGoogle Scholar
  5. 5.
    Wehr T., Zhu M., and Mao D. T. (2001) Sieving matrix selection, in Capillary Electrophoresis of Nucleic Acids, Vol. 1 (Mitchelson K. R. and Cheng J., eds.), Humana Press, Totowa, NJ, pp. 167–187.Google Scholar
  6. 6.
    Hjertén S. (1983) High-performance electrophoresis: The electrophoretic counterpart of high-performance liquid chromatography. J. Chromatogr. 270, 1–6.CrossRefGoogle Scholar
  7. 7.
    Cohen A. S., Najarian D. R., Paulus A., Guttman A., Smith J. A., and Karger B. L. (1988) Rapid separation and purification of oligonucleotides by high-performance capillary gel electrophoresis. Proc. Natl. Acad. Sci. USA 85, 9660–9663.PubMedCrossRefGoogle Scholar
  8. 8.
    Yin H.-F., Lux J. A., and Schomburg G. (1990) Production of polyacrylamide gel filled capillaries for capillary gel electrophoresis (CGE): influence of capillary surface pretreatment on performance and stability. J. High Res. Chromatogr. 13, 624–627.CrossRefGoogle Scholar
  9. 9.
    Guttman A. and Cooke N. (1991) Effect of temperature on the separation of DNA restriction fragments in capillary gel electrophoresis. J. Chromatogr. 559, 285–294.CrossRefGoogle Scholar
  10. 10.
    Nakatani M., Skibukawa A., and Nakagawa T. (1994) Preparation and characterization of a stable polyacrylamide sieving matrix-filled capillary for high-performance capillary electrophoresis. J. Chromatogr. A 661, 315–321.PubMedCrossRefGoogle Scholar
  11. 11.
    Lindberg P., Stjernström M., and Roeraade J. (1997) Gel electrophoresis of DNA fragments in narrow-bore capillaries. Electrophoresis 18, 1873–1979.Google Scholar
  12. 12.
    Gelfi C. and Righetti P. G. (1981) Polymerization kinetics of polyacrylamide gels, II. Effect of temperature. Electrophoresis 2, 220–228.CrossRefGoogle Scholar
  13. 13.
    Caglio S. and Righetti P. G. (1993) On the pH dependence of polymerization efficiency. Electrophoresis 14, 554–558.PubMedCrossRefGoogle Scholar
  14. 14.
    Bio-Rad Laboratories; acrylamide polymerization-a practical approach (1987) Bulletin 1156.Google Scholar
  15. 15.
    Zhu M.-D., Hansen D. L., Burd S., and Gannon F. (1989) Factors affecting free zone electrophoresis and isoelectric focusing in capillary electrophoresis. J. Chromatogr. 480, 311–319.CrossRefGoogle Scholar
  16. 16.
    Baba Y., Ishimaru N., Samata K., and Tsuhako M. (1993) High-resolution separation of DNA fragments by capillary electrophoresis in cellulose derivative solutions. J. Chromatogr. A 653, 329–335.PubMedCrossRefGoogle Scholar
  17. 17.
    Kleemib M. H., Gilges M., and Schomburg G. (1993) Capillary electrophoresis of DNA restriction fragments with solutions of entangled polymers. Electrophoresis 14, 515–522.CrossRefGoogle Scholar
  18. 18.
    Barron A. E., Sunada W. M., and Blanch H. W. (1995) The use of coated and uncoated capillaries for the electrophoretic separation of DNA in dilute polymer solutions. Electrophoresis 16, 64–74.PubMedCrossRefGoogle Scholar
  19. 19.
    Dolnik V. and Novotny M. (1992) Capillary Electrophoresis of DNA fragments in entangled polymer solutions: A study of separation variables. J. Microcol. Sep. 4, 515–519.CrossRefGoogle Scholar
  20. 20.
    Izumi T., Yamaguchi M., Yoneda K., Isobe T., Okuyama T., and Shinoda T. (1993) Use of glucomannan for the separation of DNA fragments by capillary electrophoresis. J. Chromatogr. A 652, 41–46.PubMedCrossRefGoogle Scholar
  21. 21.
    Heller C. (1998) Finding a universal low-viscosity polymer for DNA separation. Electrophoresis 19, 1691–1698.PubMedCrossRefGoogle Scholar
  22. 22.
    Kleparnik K., Mala Z., Doskar J., Rosypal S., and Bocek P. (1995) An improvment of restriction analysis of bacteriophage DNA using capillary electrophoresis in agarose solution. Electrophoresis 16, 366–376.PubMedCrossRefGoogle Scholar
  23. 23.
    Fung E. N., Pang H.-M., and Yeung E. S. (1998) Fast DNA separations using poly(ethylene oxide) in non-denaturing medium with temperature programming. J. Chromatogr. 806, 157–164.CrossRefGoogle Scholar
  24. 24.
    Gao Q. and Yeung E. S. (1998) A matrix for DNA separation: Genotyping and sequencing using poly(vinylpyrrolidone) solution in uncoated capillaries. Anal. Chem. 70, 1382–1388.PubMedCrossRefGoogle Scholar
  25. 25.
    Rill R. L., Liu Y., Van Winkle D. H., and Locke B. R. (1998) Pluronic copolymer liquid crystals: unique, replaceable media for capillary gel electrophoresis. J. Chromatogr. A 817, 287–295.PubMedCrossRefGoogle Scholar
  26. 26.
    Rill R. L. and Liu Y. (2001) DNA separation by capillary electrophoroesis in lyotropic polymer liquid crystals, in Capillary Electrophoresis of Nucleic Acids, Vol. 1 (Mitchelson K. R. and Cheng J., eds.), Humana Press, Totowa, NJ, pp. 203–213.Google Scholar
  27. 27.
    Chiari M. and Righetti P. G. (1995) New types of separation matrices for electrophoresis. Electrophoresis 16, 1815–1829.PubMedCrossRefGoogle Scholar
  28. 28.
    Chiari M. and Melis A. (1998) Low viscosity DNA sieving matrices for capillary electrophoresis. Trends Anal. Chem. 17, 623–632.CrossRefGoogle Scholar
  29. 29.
    Grossman P. D. and Soane D. S. (1991) Capillary electrophoresis in entangled polymer solutions J. Chromatogr. 559, 257–266.PubMedCrossRefGoogle Scholar
  30. 30.
    Hjertén S. (1985) High-performance electrophoresis: Elimination of electroendosmosis and solute adsorption. J. Chromatogr. 347, 191–198.CrossRefGoogle Scholar
  31. 31.
    Chiari M. and Cretich M. (2001) Capillary coatings: choices for capillary electrophoresis of DNA, in Capillary Electrophoresis of Nucleic Acids, Vol. 1 (Mitchelson K. R. and Cheng J., eds.), Humana Press, Totowa, NJ, pp. 125–138.Google Scholar
  32. 32.
    Sumita C., Baba Y., Hide K., Ishimaru N., Samata K., Tanaka A., and Tsuhako M. (1994) Comparative study of non-porous anion-exchange chromatography, capillary gel electrophoresis and capillary electrophoresis in polymer solutions in the separation of DNA restriction fragments. J. Chromatogr. A 661, 297–303.CrossRefGoogle Scholar
  33. 33.
    Bae Y. C. and Soane D. J. (1993) Polymeric separation media for electrophoresis: cross-linked systems or entangled solutions. J. Chromatogr. A 652, 17–22.CrossRefGoogle Scholar
  34. 34.
    Kamahori M. and Kambara H. (1996) Characteristics of single-stranded DNA separation by capillary gel electrophoresis. Electrophoresis 17, 1476–1484.PubMedCrossRefGoogle Scholar
  35. 35.
    Hjertén S., Srichaiyo T., and Palm A. (1994) UV-transparent, replaceable agarose gels for molecular-sieve (capillary) electrophoresis of proteins and nucleic acids. Biomed. Chromatogr. 8, 73–76.PubMedCrossRefGoogle Scholar
  36. 36.
    Chen N., Wu L., Palm A., Srichaiyo T., and Hjerten S. (1996) High-performance field inversion capillary electrophoresis of 0.1–23 kbp DNA fragments with low-gelling, replaceable agarose gels. Electrophoresis 17, 1443–1450.PubMedCrossRefGoogle Scholar
  37. 37.
    Palm A. and Hjertén S. (1996) The resolution of DNA fragments in capillary electrophoresis in replaceable agarose gels. J. Capillary Electrophor. 3, 173–179.PubMedGoogle Scholar
  38. 38.
    Lux J. A., Häusig U., and Schomburg G. (1990) Production of windows in fused silica capillaries for in-column detection of UV-absorption or fluorescence in capillary electrophoresis or HPLC. J. High Res. Chromatogr. 13, 373–374.CrossRefGoogle Scholar
  39. 39.
    Hjertén S. (1990) Zone broadening in electrophoresis with special reference to high-performance electrophoresis in capillaries: An interplay between theory and practice. Electrophoresis 11, 665–690.PubMedCrossRefGoogle Scholar
  40. 40.
    Slater G. W., Mayer P., and Drouin G. (1996) High resolution separation and analysis of biological macromolecules, in Methods in Enzymology, Vol. 270 (Karger B. L. and Hancock W. S., eds.), Academic Press, London and New York, pp. 272–295.Google Scholar
  41. 41.
    Hamelin C. and Yelle J. (1990) Gel and buffer effects on the migration of DNA molecules in agarose. Appl. Theor. Electrophor. 1, 225–231.PubMedGoogle Scholar
  42. 42.
    Peats S., Nochumson S., and Kirkpatrick F. H. (1986) Effects of borate on agarose structure. Biophys. J. 49, 91a.CrossRefGoogle Scholar
  43. 43.
    Zernik J. and Lichtler A. (1987) Borate-buffer-related effects on the electrophoretic mobility of linear DNA fragments in agarose. BioTechniques 5, 411–413.Google Scholar
  44. 44.
    Mitchelson K. R. and Cheng J. (2001) Capillary electrophoresis with glycerol as an additive, in Capillary Electrophoresis of Nucleic Acids, Vol. 1 (Mitchelson K. R. and Cheng J., eds.), Humana Press, Totowa, NJ, pp. 259–277.Google Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Anders K. Palm
    • 1
  1. 1.Molecular SciencesAstraZeneca R&D LundLundSweden

Personalised recommendations