Replaceable Polymers for DNA Sequencing by Capillary Electrophoresis

  • Mark A. Quesada
  • Steve Menchen
Part of the Methods in Molecular Biology book series (MIMB, volume 162)

Abstract

In this chapter, we examine important parameters that affect the performance of replaceable polymers currently used for DNA sequencing by capillary electrophoresis (DNASCE). Background on physical models used to describe polymer solutions and DNA migration in semi-dilute polymer solution will be given to provide a framework for interpretation of experimental data and provide estimates of optimized polymer and electrophoresis parameters. Discussion of parameters affecting DNASCE resolution will be followed by comparison of experimental conditions for four linear polymers currently used in DNASCE (1, 2, 3, 4, 5, 6, 7, 8, 9, 10). Recent developments in performance optimization and inner-wall coatings will also be discussed.

Keywords

Cellulose Migration Urea Amide Polyethylene 

References

  1. 1.
    Johnson B.F., Oaks F.N., and Menchen S.M. (1996) DNA sequencing in uncoated capillaries using a new sieving medium on the ABI prism 310 genetic analyzer,in Eighth International Genome Sequencing and Analysis Conference, Hilton Head, SC,USA.Google Scholar
  2. 2.
    Menchen S., Johnson B., Madabhushi R., and Winnik M. (1996) The design of separation media for DNA sequencing in capillaries, in Progress in Biomedical Optics:Proceedings of SPIE-The International Society for Optical Engineering, San Jose, California, 2680, pp. 294–303.Google Scholar
  3. 3.
    Zhang J., Fang Y., Hou J.Y., Ren H.J., Jiang R., Roos P., and Dovichi N.J.(1995) Use of non-cross-linked polyacrylamide for four-color DNA sequencing by capillary electrophoresis separation of fragments up to 640 bases in length in two hours. Anal.Chem. 67, 4589–4593.PubMedCrossRefGoogle Scholar
  4. 4.
    Manabe T., Chen N., Terabe S., Yohda M., and Endo I.(1994) Effects of linear polyacrylamide concentrations and applied voltages on the separation of oligonucleotides and DNA sequencing fragments by capillary electrophoresis. Anal.Chem. 66, 4243–4252.PubMedCrossRefGoogle Scholar
  5. 5.
    Fung E.N. and Yeung E.S.(1995) High-speed DNA sequencing by using mixed poly(ethylene oxide)solutions in uncoated capillary columns. Anal.Chem. 67, 1913–1919.CrossRefGoogle Scholar
  6. 6.
    Bashkin J., Marsh M., Barker D., and Johnston R.(1996) DNA sequencing by capillary electrophoresis with a hydroxyethylcellulose sieving buffer. Appl.Theor.Electrophoresis 6, 23–28.Google Scholar
  7. 7.
    Carrilho E., Ruiz-Martinez M.C., Berka J., Smirnov I., Goetzinger W., Miller A.W., Brady D., and Karger B.L. (1996) Rapid DNA sequencing of more than 1000 bases per run by capillary electrophoresis using replaceable linear polyacrylamide solutions. Anal. Chem. 68, 3305–3313.PubMedCrossRefGoogle Scholar
  8. 8.
    Salas-Solano O., Carrilho E., Kotler L., Miller A.W., Goetzinger W., Sosic Z.,and Karger B.L.(1998) Routine DNA sequencing of 1000 bases in less than one hour by capillary electrophoresis with replaceable linear polyacrylamide solutions. Anal.Chem. 70, 3396–4003.Google Scholar
  9. 9.
    Chang H.-T. and Yeung E.S. (1995) Poly(ethyleneoxide)for high-resolution and high-speed separation of DNA by capillary electrophoresis. J. Chromatogr. B 669, 113–123.CrossRefGoogle Scholar
  10. 10.
    Grossman P.D.(1994) Electrophoretic separation of DNA sequencing extension products using low-viscosity entangled polymer networks. J Chromatogr. A 663, 219–227.Google Scholar
  11. 11.
    Fleischmann R.D., Adams M.D., White O., Clayton R.A., Kirkness E.F., Kerlavage A.R., et al.(1995) Whole-genome random sequencing and assembly of Haemophilus influenzae rd. Science 269, 496–512.PubMedCrossRefGoogle Scholar
  12. 12.
    Adams M.A., Fields C., and Venter J.C. (1994) Automated DNA Sequencing and Analysis, 1sted., Academic Press, London.Google Scholar
  13. 13.
    Grossman P.D. and Colburn J.C. (1992) Capillary Electrophoresis:Theory and Practice, 1sted., Academic Press, San Diego.Google Scholar
  14. 14.
    Li S.F.Y. (1994) Capillary Electrophoresis:Principles,Practice and Applications, 1sted., Elsevier,Singapore, Republic of Singapore.Google Scholar
  15. 15.
    Landers J.P. (1994) Handbook of Capillary Electrophoresis, 1sted., CRC Press, Boca Raton,Florida.Google Scholar
  16. 16.
    Righetti P.G. (1996) Capillary Electrophoresis in Analytical Biotechnology, 1sted., CRC Press, Boca Raton,Florida.Google Scholar
  17. 17.
    Cohen A.S., Najarian D.R., Paulus A., Guttman A., Smith J.A., and Karger B.L. (1988) Rapid separation and purification of oligonucleotides by high-performance capillary gel electrophoresis. Proc.Natl.Acad.Sci.USA 85, 9660–9663.PubMedCrossRefGoogle Scholar
  18. 18.
    Swerdlow H., Dew-Jager K.E., Brady K., Grey R., Dovichi N.J., and Gesteland R. (1992) Stability of capillary gels for automated sequencing of DNA. Electrophoresis 13, 475–483.PubMedCrossRefGoogle Scholar
  19. 19.
    Sudor J., Foret F., and Bocek P.(1991) Pressure refilled polyacrylamide columns for the separation of oligonucleotides by capillary electrophoresis. Electrophoresis 12, 1056–1058.PubMedCrossRefGoogle Scholar
  20. 20.
    Cantor C.R. and Schimmel P.R.(1980) Biophysical Chemistry:Part 3, W.H.Freeman and Company, New York.Google Scholar
  21. 21.
    Eisenberg D. and Crothers D.(1979) Physical Chemistry with Applications to the Life Sciences, Benjamin/Cummings Publishing Company Inc., Menlo Park.Google Scholar
  22. 22.
    Heller C. (1995) Capillary electrophoresis of proteins and nucleic acids in gels and entangled polymer solutions. J.Chromatogr. A 698, 19–31.CrossRefGoogle Scholar
  23. 23.
    McDonell M.W., Simon M.N., and Studier F.W. (1977) Analysis of restriction fragments of T7 DNA and determination of molecular weights by electrophoresis in neutral and alkaline gels. J. Mol. Biol. 110, 119–146.PubMedCrossRefGoogle Scholar
  24. 24.
    Slater G.W., Rousseau J., Noolandi J., Turmel C., and Lalande M.(1988) Quantitative analysis of the three regimes of DNA electrophoresis in agarose gels. Biopolymers 27, 509–524.PubMedCrossRefGoogle Scholar
  25. 25.
    Heller C., Duke T., and Viovy J.-L. (1994) Electrophoretic mobility of DNA in gels.II. Systematic experimental study in agarose gels. Biopolymers 34, 249–259.CrossRefGoogle Scholar
  26. 26.
    Lumpkin O.J., Dejardin P., and Zimm B.H. (1985) Theory of gel electrophoresis of DNA. Biopolymers 24, 1573–1593.PubMedCrossRefGoogle Scholar
  27. 27.
    Lumpkin O.J. and Zimm B.H. (1982) Mobility of DNA in gel electrophoresis. Biopolymers 21, 2315–2316.PubMedCrossRefGoogle Scholar
  28. 28.
    Lerman L.S. and Frisch H.L. (1982) Why does the electrophoretic mobility of DNA in gels vary with the length of the molecule? Biopolymers 21, 995–997.PubMedCrossRefGoogle Scholar
  29. 29.
    Slater G.W. and Noolandi J. (1985) Prediction of chain elongation in the reptation theory of DNA gel electrophoresis. Biopolymers 24, 2181–2184.CrossRefGoogle Scholar
  30. 30.
    Slater G.W. and Noolandi J. (1986) On the reptation theory of gel electrophoresis. Biopolymers 25, 431–454.CrossRefGoogle Scholar
  31. 31.
    Slater G.W. (1992) Anomalous electrophoresis,self-trapping and ≪freezing≫of partially charged polyelectrolytes. J.Phys.II (Paris) 2, 1149–1158.CrossRefGoogle Scholar
  32. 32.
    Slater G.W., Turmel C., Lalande M., and Noolandi J.(1989) DNA gel electrophoresis: effect of field intensity and agarose concentration on band inversion. Biopolymers 28, 1793–1799.PubMedCrossRefGoogle Scholar
  33. 33.
    Luckey J.A. and Smith L.M. (1993) A model for the mobility of single-stranded DNA in capillary gel electrophoresis. Electrophoresis 14, 492–501.PubMedCrossRefGoogle Scholar
  34. 34.
    Mitnik L., Salome L., Viovy J.-L., and Heller C. (1995) Systematic study of field and concentration effects in capillary electrophoresis of DNA in polymer solutions. J.Chromatogr. A 710, 309–321.PubMedCrossRefGoogle Scholar
  35. 35.
    Kloczkowski A. (1996).Theoretical Models for Polymer Chains,in Physical Properties of Polymers Handbook (Mark J.E., ed.), AIP Press,Woodbury, New York, pp.61–70.Google Scholar
  36. 36.
    Doi M. (1996) Introduction to Polymer Physics (See,H.,translator), Clarendon Press, Oxford.Google Scholar
  37. 37.
    Ying Q., Wu G., Chu B., Farinato R., and Jackson L. (1996) Laser light scattering of poly(acrylamide)in 1 M NaCl aqueous solution. Macromolecules 29, 4646–4654.CrossRefGoogle Scholar
  38. 38.
    Kurata M. and Tsunashima Y. (1989) Viscosity-molecular weight relationships and unperturbed dimensions of linear chain molecules,in Polymer Handbook (Brandrup J. and Immergut E.H., eds.), Wiley-Interscience, New York.Google Scholar
  39. 39.
    Cowie J.M.G. (1991) Polymers:Chemistry and Physics of Modern Materials, Blackie Academic and Professional, Glasgow.Google Scholar
  40. 40.
    Sundararajan P.R. (1996) Theta Temperatures,in Physical Properties of Polymers Handbook (Mark J.E., ed.), AIP Press,Woodbury, New York, pp.197–226.Google Scholar
  41. 41.
    Fuchs O. (1989) Solvents and Non-Solvents for Polymers, in Polymer Handbook (Brandrup J. and Immergut E.H., eds.), Wiley-Interscience, New York.Google Scholar
  42. 42.
    DeGennes P.-G. (1991) Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca.Google Scholar
  43. 43.
    Ying Q. and Chu B.(1987) Overlap concentration of macromolecules in solution. Macromolecules 20, 362–366.CrossRefGoogle Scholar
  44. 44.
    Viovy J.-L. and Duke T. (1993) DNA electrophoresis in polymer solutions:Ogston sieving,reptation and constraint release. Electrophoresis 14, 322–329.PubMedCrossRefGoogle Scholar
  45. 45.
    Quesada M.A. (1997) Replaceable polymers in DNA sequencing by capillary electrophoresis. Curr.Opinion Biotech. 8, 82–93.CrossRefGoogle Scholar
  46. 46.
    Wu C., Quesada M.A., Schneider D.K., Farinato R., Studier F.W.,and Chu B.(1996) Polyacrylamide solutions for DNA sequencing by capillary electrophoresis:mesh sizes, separation and dispersion. Electrophoresis 17, 1103–1109.PubMedCrossRefGoogle Scholar
  47. 47.
    Daoud M., Cotton J.P., Farnoux B., Jannink G., Sarma G., Benoit H., Duplessix R., Picot C., and Gennes P.-G.D. (1975) Solutions of flexible polymers.Neutron experiments and interpretation. Macromolecules 8, 804–818.CrossRefGoogle Scholar
  48. 48.
    Barron A.E., Soane D.S., and Blanch H.W. (1993) Capillary electrophoresis of DNA in uncross-linked polymer solutions. J.Chromatogr. A 652, 3–16.PubMedCrossRefGoogle Scholar
  49. 49.
    Grossman P.D. and Soane D.S. (1991) Experimental and theoretical studies of DNA separations by capillary electrophoresis in entangled polymer solutions. Biopolymers 31, 1221–1228.PubMedCrossRefGoogle Scholar
  50. 50.
    Slater G.W., Mayer P. and Drouin G. (1996) Migration of DNA through gels, in Methods in Enzymology,(Karger B.L.and Hancock W.S., eds.), Academic Press, pp.272–295.Google Scholar
  51. 51.
    Luckey J.A., Norris T.B., and Smith L.M. (1993) Analysis of resolution in DNA sequencing by capillary gel electrophoresis. J.Phys.Chem. 97, 3067–3075.CrossRefGoogle Scholar
  52. 52.
    Menchen S., Johnson B., Winnik M.A., and Xu B. (1996) Flowable networks as DNA sequencing media in capillary columns. Electrophoresis 17, 1451–1458.PubMedCrossRefGoogle Scholar
  53. 53.
    Slater G.W., Mayer P., and Grossman P.D. (1995) Diffusion,Joule heating,and band broadening in capillary gel electrophoresis of DNA. Electrophoresis 16, 75–83.PubMedCrossRefGoogle Scholar
  54. 54.
    Wooley A.T. and Mathies R.A. (1994) Ultra-high-speed DNA fragment separations using microfabricated capillary array electrophoresis chips. Proc.Natl.Acad.Sci.USA 91, 11,348–11,352.CrossRefGoogle Scholar
  55. 55.
    Luckey J.A. and Smith L.M. (1993) Optimization of electric field strength for DNA sequencing in capillary gel electrophoresis. Anal.Chem. 65, 2841–2850.PubMedCrossRefGoogle Scholar
  56. 56.
    Tabor S. and Richardson C.C. (1987) DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proc.Natl.Acad.Sci.USA 84, 4767–4771.PubMedCrossRefGoogle Scholar
  57. 57.
    Tabor S. and Richardson C.C. (1995) A single residue in DNA polymerases of the Escherichia coli DNA polymerase I family is critical for distinguishing between deoxy-and dideoxyribonucleotides. Proc.Natl.Acad.Sci.USA 92, 6339–6343.PubMedCrossRefGoogle Scholar
  58. 58.
    Tabor S. and Richardson C.C. (1990) DNA sequence analysis with a modified bacteriophage T7 DNA polymerase:Effect of pyrophosphorolysis and metalions. J. Biol. Chem. 265, 8322–8328.PubMedGoogle Scholar
  59. 59.
    Ansorge W., Zimmerman J., Schwager C., Stegemann J., Erfle H., and Voss H. (1990) One label,one tube,Sanger DNA sequencing in one and two lanes on a gel. Nucleic Acids Res. 18, 3419–3420.PubMedCrossRefGoogle Scholar
  60. 60.
    Chen D.Y., Harke H.R., and Dovichi N.J. (1992) Two-label peak-height encoded DNA sequencing by capillary gel electrophoresis:three examples. Nucleic Acids Res. 20, 4873–4880.PubMedCrossRefGoogle Scholar
  61. 61.
    Ju J., Kheterpal I., Scherer J.R., Ruan C., Fuller C.W., Glazer A.N., and Mathies R.A. (1995) Design and synthesis of fluorescence energy transfer dye-labeled primers and their application for DNA sequencing and analysis. Anal. Biochem. 231, 131–140.PubMedCrossRefGoogle Scholar
  62. 62.
    Lee L.G., Spurgeon S.L., Heiner C.R., Benson S.C., Rosenblum B.B., Menchen S.M., Graham R.J., Constantinescu A., Upadhya K.G., and Cassel J.M. (1997) New energy transfer dyes for DNA sequencing. Nucleic Acids Res. 25, 2816–2822.PubMedCrossRefGoogle Scholar
  63. 63.
    Rosenblum B.B., Lee L.G., Spurgeon S.L., Khan S.H., Menchen S.M., Heiner C.R., and Chen S.M. (1997) New dye-labeled terminators for improved DNA sequencing patterns. Nucleic Acids Res. 25, 4500–4504.PubMedCrossRefGoogle Scholar
  64. 64.
    Lu H., Arriaga E., Chen D.Y., Figeys D., and Dovichi N.J. (1994) Activation energy of single-stranded DNA moving through cross-linked polyacrylamide gels at 300 V/cm: Effect of temperature on sequencing rate in high-electric-field capillary gel electrophoresis. J.Chromatogr. A 680, 503–510.PubMedCrossRefGoogle Scholar
  65. 65.
    Lu H., Arriaga E., Chen D.Y., and Dovichi N.J. (1994) High-speed and high-accuracy DNA sequencing by capillary gel electrophoresis in a simple,low cost instrument:twocolor peak-height encoded sequencing at 40°C. J. Chromatogr. A 680, 497–501.PubMedCrossRefGoogle Scholar
  66. 66.
    Kléparník K., Foret F., Berka J., Goetzinger W., Miller A.W., and Karger B.L. (1996) The use of elevated column temperature to extend DNA sequencing read lengths in capillary electrophoresis with replaceable polymer matrices. Electrophoresis 17, 1860–1866.PubMedCrossRefGoogle Scholar
  67. 67.
    Rosenblum B.B., Oaks F., Menchen S., and Johnson B.(1997) Improved single-strand DNA sizing accuracy in capillary electrophoresis. Nucleic Acids Res. 25, 3925–3929.PubMedCrossRefGoogle Scholar
  68. 68.
    Chiari M., Nesi M., and Righetti P.G. (1993) Movement of DNA fragments during capillary zone electrophoresis in liquid polyacrylamide. J. Chromatogr. A 652, 31–39.CrossRefGoogle Scholar
  69. 69.
    Chiari M. and Righetti P.G. (1995) New types of separation matrices for electrophoresis. Electrophoresis 16, 1815–1829.PubMedCrossRefGoogle Scholar
  70. 70.
    Barron A.E., Sunada W.M., and Blanch H.W. (1996) The effects of polymer properties on DNA separations by capillary electrophoresis in uncross-linked polymer solutions. Electrophoresis 17, 744–757.PubMedCrossRefGoogle Scholar
  71. 71.
    Semenov A.N., Joanny J.F., and Kholov A.F. (1995) Associating polymers:equilibrium and linear viscoelasticity. Macromolecules 28, 1066–1075.CrossRefGoogle Scholar
  72. 72.
    Chiari M. and Cretich M. (2001) Capillary coatings:choices for capillary electrophoresis of DNA, in Capillary Electrophoresis of Nucleic Acids, Vol.1 (Mitchelson K.R. and Cheng J., eds.),Humana Press, Totowa,NJ, pp.125–138.Google Scholar
  73. 73.
    Cobb K.A., Dolnik V., and Novotny M. (1990) Electrophoretic separations of proteins in capillaries with hydrolytically stable surface structures. Anal.Chem. 62, 2478–2483.PubMedCrossRefGoogle Scholar
  74. 74.
    Hjertén S. and Kubo K. (1993) A new type of pH-and detergent-stable coating for elimination of electroendosmosis and adsorption in (capillary)electrophoresis. Electrophoresis 14, 390–395.PubMedCrossRefGoogle Scholar
  75. 75.
    Schmalzing D., Piggee C.A., Foret F., Carrilho E., and Karger B.L. (1993) Characterization and performance of a neutral hydrophilic coating for the capillary electrophoretic separation of biopolymers. J. Chromatogr. A 652, 149-59.Google Scholar
  76. 76.
    Bruin G.J.M. and Paulus A. (1995) Biopolymer separations with capillary electrophoresis. Anal.Meth.Instrument. 2, 3–26.Google Scholar
  77. 77.
    Barron A.E., Sunada W.M., and Blanch H.W. (1995) The use of coated and uncoated capillaries for the electrophoretic separation of DNA in dilute polymer solutions. Electrophoresis 16, 64–74.PubMedCrossRefGoogle Scholar
  78. 78.
    Kim Y. and Yeung E.S. (2001) Capillary electrophoresis of DNA fragments using poly(ethylene oxide)as a sieving material, in Capillary Electrophoresis of Nucleic Acids, Vol.1 (Mitchelson K.R. and Cheng J., eds.), Humana Press, Totowa,NJ, pp.215–223.Google Scholar
  79. 79.
    Gao Q. and Yeung E.S. (1998) A matrix for DNA separation:genotyping and sequencing using poly(vinylpyrrolidone)solution in uncoated capillaries. Anal.Chem. 70, 1382–1388.PubMedCrossRefGoogle Scholar
  80. 80.
    Bello M.S., Besi P.D., Rezzonico R., Righetti P.G., and Casiraghi E. (1994) Electroosmosis of polymer solutions in fused silica capillaries. Electrophoresis 12, 623–626.CrossRefGoogle Scholar
  81. 81.
    Barberi R., Giocondo M., Bartolino R., and Righetti P.G. (1995) Probing the inner surface of a capillary with the atomic force microscope. Electrophoresis 16, 1445–1450.PubMedCrossRefGoogle Scholar
  82. 82.
    Madabhushi R.S. (1998) Separation of 4-color DNA sequencing extension products in noncovalently coated capillaries using low viscosity polymer solutions. Electrophoresis 19, 224–230.PubMedCrossRefGoogle Scholar
  83. 83.
    Madabhushi R.S. (2001) DNA sequencing in noncovalently coated capillaries using low viscosity polymer solutions, in Capillary Electrophoresis of Nucleic Acids, Vol.2 (Mitchelson K.R. and Cheng J., eds.), Humana Press, Totowa,NJ, pp.309–315.CrossRefGoogle Scholar
  84. 84.
    Chu B., Liu T., Wu C.-H., and Liang D. (2001) DNA capillary electrophoresis using block copolymer as a new separation medium, in Capillary Electrophoresis of Nucleic Acids, Vol.1 (Mitchelson K.R. and Cheng J., eds.), Humana Press, Totowa,NJ, pp.225–238.Google Scholar
  85. 85.
    Liu Y.-J. and Rill R.L. (2001) DNA separation by capillary electrophoroesis in lyotropicpolymer liquid crystals, in Capillary Electrophoresis of Nucleic Acids, Vol.1 (Mitchelson K.R. and Cheng J., eds.), Humana Press, Totowa,NJ, pp.203–213.Google Scholar
  86. 86.
    Sassi A.P., Barron A., Alonso-Amigo M.G., Hion D.Y., Yu J.S., Soane D.S., and Hooper H.H. (1996) Electrophoresis of DNA in novel thermoreversible matrices. Electrophoresis 17, 1460–1469.PubMedCrossRefGoogle Scholar
  87. 87.
    Menchen S., Johnson B., Winnik M.A., and Xu B. (1996) Flowable networks as equilibrium DNA sequencing media in capillary columns. Chemistry of Materials-Am. Chem. Soc. 8, 2205–2208.CrossRefGoogle Scholar
  88. 88.
    Slater G.W. and Drouin G.(1992) Why can we not sequence thousands of DNA bases on a polyacrylamide gel? Electrophoresis 13, 574–582.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Mark A. Quesada
    • 1
  • Steve Menchen
    • 2
  1. 1.Science & TechnologyCorning IncorporatedCorning
  2. 2.Applied Biosystems CorporationFoster City

Personalised recommendations