Skip to main content

The Measurement of Protein Degradation in Response to Oxidative Stress

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 99))

Abstract

Molecular oxygen is an excellent acceptor of electrons and is therefore employed by nature for a wide variety of highly important biochemical reactions. The chemical reactivity of oxygen, however, also leads to the formation of oxygen radicals as by-products of metabolism. These radicals result in a condition that is commonly referred to as oxidative stress, in which the formation of reactive oxygen species represents a functional challenge, or even endangers survival of a cell or organism. Oxidative stress can arise from increased production of reactive oxygen species, from exposure to an oxidant. or from decreased function of antioxidant systems or oxidant repair systems. Important examples for the involvement of reactive oxygen species in pathological conditions are inflammatory diseases, ischemia/reperfusion injuries, and many n euro degenerative disorders.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Davies K. J. A., Delsignore M. E., and Lin S. W. (1987) Protein damage anddegradation by oxygen radicals. II. Modification of amino acids. J. Bioi. Chem. 262, 9902–9907.

    CAS  Google Scholar 

  2. Stadtman E. R. (1993) Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Anna. Rev. Biochem. 62, 797–821.

    Article  CAS  Google Scholar 

  3. Dean R. T., Fu S., Stacker R., and Davies M. J. (1997) Biochemistry and pathology of radical-mediated protein oxidation. Biochem. J. 324, 1–18.

    PubMed  CAS  Google Scholar 

  4. Uchida K. and Stadtman E. R. (1992) Modification of histidine residues in proteins by reaction with 4-hydroxynonenal. Proc. Natl. Acad. Sci. USA 89, 4544–4548.

    Article  PubMed  CAS  Google Scholar 

  5. Lee Y. and Shacter E. (1995) Role of carbohydrates in oxidative modification of fibrinogen and other plasma proteins. Arch. Biochem. Biophys. 321, 175–181.

    Article  PubMed  CAS  Google Scholar 

  6. Davies K. J. A. and Delsingnore M. E. (1987) Protein Damage and Degradation by Oxygen Radicals III. Modification of secondary and tertiary structure. J. Bioi. Chem. 262, 9902–9907.

    CAS  Google Scholar 

  7. Davies K. J. A., Lin S. W., and Pacifici R. E. (1987) Protein Damage and Degradation by Oxygen Radicals-IV. Degradation of denatured protein. / Bioi. Chem. 262, 9914–9920

    CAS  Google Scholar 

  8. Grune T., Reinheckel T., and Davies K. J. A. (1997) Degradation of oxidized proteins in mammalian cells. FASEB J. 11, 526–534.

    PubMed  CAS  Google Scholar 

  9. Grune T., Reinheckel T., Joshi M., and Davies K. J. A. (1995) Proteolysis in cultured liver epithelial cells during oxidative stress. / Bioi. Chem. 270, 2344–2351.

    CAS  Google Scholar 

  10. Grune T., Reinheckel T., and Davies K. J. A. (1996) Degradation of oxidized proteins in human hematopoietic cells by proteasome. J. Biol. Chem. 271, 15,504–15,509.

    Article  PubMed  CAS  Google Scholar 

  11. Grune T., Blasig I. E., Sitte N., Roloff B., Haseloff R., and Davies K. J. A. (1998) Peroxynitrite increases the degradation of aconitase and other cellular proteins by proteasome. J. Bioi. Chem. 273, 10,857–10,862.

    Article  CAS  Google Scholar 

  12. Davies K. J. A. and Goldberg A. L. (1987) Oxygen radicals stimulate intracellular proteolysis and lipid peroxidation by independent mechanisms inerythrocytes. J. Bioi. Chem. 262, 8220–8226.

    CAS  Google Scholar 

  13. Davies K. J. A. and Goldberg A. L. (1987) Proteins damaged by oxygen radicals are rapidly degraded in extracts of red blood cells. J. Bioi. Chem. 262, 8227–8234.

    CAS  Google Scholar 

  14. Rice R. and Means G. E. (1971) Radioactive labeling of proteins in vitro. J. Bioi. Chem. 246, 831, 832.

    CAS  Google Scholar 

  15. Jentoft N. and Dearborn D. G. (1979) Labeling of proteins by reductive methylation using sodium cyanoborohydride. J. Bioi. Chem. 254, 4359–4365.

    CAS  Google Scholar 

  16. Yallow R. S. and Berson S. A. (1957) Chemical and biological alterations induced by irradiation of [131I]-labelled serum albumin. J. din. Invest. 36, 44–50.

    Google Scholar 

  17. Hough R., Pratt G., and Rechsteiner M. (1987) Purification of two high molecular weight proteases from rabbit reticulocyte lysate. J. Bioi. Chem. 262, 8303–8313.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Reinheckel, T., Grune, T., Davies, K.J.A. (2000). The Measurement of Protein Degradation in Response to Oxidative Stress. In: Walker, J.M., Keyse, S.M. (eds) Stress Response. Methods in Molecular Biology™, vol 99. Humana Press. https://doi.org/10.1385/1-59259-054-3:49

Download citation

  • DOI: https://doi.org/10.1385/1-59259-054-3:49

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-611-6

  • Online ISBN: 978-1-59259-054-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics