Skip to main content

UVB-Regulated Gene Expression in Human Keratinocytes

Analysis by Differential Display

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 99))

Abstract

The ozone layer of the earth effectively absorbs high-energy solar ultraviolet (UV) radiation below 290 nm. Consequently UVC (100–280 nm) radiation is completely blocked by the upper atmosphere while UVB (from 290–320 ) and UVA (320–400 nm) radiation reaches the earth’s surface (1,2). Of this terrestrial UV light, the midrange ultraviolet radiation (UVB) is the most relevant with respect to physical injury to human skin and causes severe damage, including cutaneous inflammation, immunosuppression, as well as the induction and promotion of cancer (for review, see ref. 3). In searching for the physiological targets of UVB radiation, it is important to note that 99% of this radiation is absorbed within the outermost 0.03 mm of the epidermis (4). Therefore, keratinocytes probably constitute a major cellular target. Early events in the UV response of mammalian cells are the activation of transcription factors such as AP-1 (57) and nuclear factor-κB (NF-κB) (6) (see also, Chapter 16, this volume) as well as the initiation of signal-transduction events mediated by tyrosine kinases (8,9) (see also, Chapter 7, this volume). Although there is an increasing amount of information about cellular components that lie both upstream and downstream of these proteins within UV-activated signal-trans ductionpathways, investigations of the response of mammalian cells to UV exposure have mainly been restricted to a small number of known target genes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Rosen C. F., Gajic D., and Drucker D. J. (1990) Ultraviolet radiation induction of ornithine decarboxylase in rat keratinocytes. Cancer Res. 50, 2631–2635.

    PubMed  CAS  Google Scholar 

  2. Shea C. R. and Parrish J. A. (1991) Nonionizing radiation and the skin, in Physiology Biochemistry and Molecular Biology of the Skin. Oxford University Press, New York, pp. 910–927.

    Google Scholar 

  3. Ullrich S. E. (1995) Cutaneous biologic responses to ultraviolet radiation. Curr. Opin. Dermatol. 2, 225–230.

    Google Scholar 

  4. Buzzell R. A. (1993) Effects of solar radiation on the skin. Otolaryngol. Clin. North Am. 26, 1–11.

    PubMed  CAS  Google Scholar 

  5. Radler-Pohl A., Sachsenmaier C., Gebel S., Auer H. P., Bruder J. T., Rapp U., et al. (1993) UV-induced activation of AP-1 involves obligatory extranuclear steps including Raf-1 kinase. EMBO J. 12, 1005–1012.

    PubMed  CAS  Google Scholar 

  6. Fisher G. J., Datta S. C., Talwar H. S., Wang Z. Q., Varani J., Kang S., and Voorhees J. J. (1996) Molecular basis of sun-induced premature skin ageing and retinoid antagonism. Nature 379, 335–339.

    Article  PubMed  CAS  Google Scholar 

  7. Devary Y., Gottlieb R. A., Lau L. F., and Karin M. (1991) Rapid and preferential activation of the c-jun gene during the mammalian UV response. Mol. Cell Biol. 11, 2804–2811.

    PubMed  CAS  Google Scholar 

  8. Devary Y., Gottlieb R. A., Smeal T., and Karin M. (1992) The mammalian ultraviolet response is triggered by activation of Src tyrosine kinases. Cell 71, 1081–1091.

    Article  PubMed  CAS  Google Scholar 

  9. Coffer P. J., Burgering B. M., Peppelenbosch M. P., Bos J. L., and Kruijer W. (1995) UV activation of receptor tyrosine kinase activity. Oncogene 11, 561–569.

    PubMed  CAS  Google Scholar 

  10. Cochran B. H., Zumstein P., Zullo J., Rollins B., Mercola M., and Stiles C. D. (1987) Differential colony hybridization: molecular cloning from a zero data base. Methods Enzymol. 147, 64–85.

    Article  PubMed  CAS  Google Scholar 

  11. Schweinfest C. W., Nelson P. S., Graber M. W., Demopoulos R. I., and Papas T. S. (1995) Subtraction hybridization cDNA libraries. Methods Mol. Biol. 37, 13–30.

    PubMed  CAS  Google Scholar 

  12. Rosen C. F., Poon R., and Drucker D. J. (1995) UVB radiation-activated genes induced by transcriptional and posttranscriptional mechanisms in rat keratinocytes. Am. J. Physiol. 268, 846–855.

    Google Scholar 

  13. Kartasova T., Cornelissen B. J., Belt P., and van de Putte P. (1987) Effects of UV, 4-NQO and TPA on gene expression in cultured human epidermal keratinocytes. Nucleic Acids Res. 15, 5945–5962.

    Article  PubMed  CAS  Google Scholar 

  14. Belyavsky A., Vinogradova T., and Rajewsky K. (1989) PCR-based cDNA library construction: general cDNA libraries at the level of a few cells. Nucleic Acids Res. 17, 2919–2932.

    Article  PubMed  CAS  Google Scholar 

  15. Christoph T., Rickert R., and Rajewsky K. (1994) M17: a novel gene expressed in germinal centers. Int. Immunol. 6, 1203–1211.

    Article  PubMed  CAS  Google Scholar 

  16. Liang P. and Pardee A. B. (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257, 967–971.

    Article  PubMed  CAS  Google Scholar 

  17. Welsh J., Chada K., Dalal S. S., Cheng R., Ralph D., and McClelland M. (1992) Arbitrarily primed PCR fingerprinting of RNA. Nucleic Acids Res. 20, 4965–4970.

    Article  PubMed  CAS  Google Scholar 

  18. Abts H. F., Breuhahn K., Michel G., Köhrer K., Esser P., and Ruzicka T. (1997) Analysis of UVB modulated gene expression in human keratinocytes by mRNA differential display PCR (DD-PCR). Photochem. Photobiol. 66, 363–367.

    Article  PubMed  CAS  Google Scholar 

  19. Liang P., Averboukh L., Keyomarsi K., Sager R., and Pardee A. B. (1992) Differential display and cloning of messenger RNAs from human breast cancer versus mammary epithelial cells. Cancer Res. 52, 6966–6968.

    PubMed  CAS  Google Scholar 

  20. Liang P. and Pardee A. B. (1995) Recent advances in differential display. Curr. Opin. Immunol. 7, 274–280.

    Article  PubMed  CAS  Google Scholar 

  21. Liang P., Bauer D., Averboukh L., Warthoe P., Rohrwild M., Muller H., Strauss M., and Pardee A. B. (1995) Analysis of altered gene expression by differential display. Methods Enzymol. 254, 304–321.

    Article  PubMed  CAS  Google Scholar 

  22. Liang P., Zhu W., Zhang X., Guo Z., O′Connell R. P., Averboukh L., Wang F., and Pardee A. B. (1994) Differential display using one-base anchored oligodT primers. Nucleic Acids Res. 22, 5763–5764.

    Article  PubMed  CAS  Google Scholar 

  23. Boukamp P., Petrussevska R. T., Breitkreutz D., Hornung J., Markham A., and Fusenig N. E. (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J. Cell Biol. 106, 761–771.

    Article  PubMed  CAS  Google Scholar 

  24. Krutmann J., Bohnert E., and Jung E. G. (1994) Evidence that DNA damage is a mediate in ultraviolet B radiation-induced inhibition of human gene expression: ultraviolet B radiation effects on intercellular adhesion molecule-1 (ICAM-1) expression. J. Invest. Dermatol. 102, 428–432.

    Article  PubMed  CAS  Google Scholar 

  25. Sambrook J., Fritsch E. F., and Maniatis T. (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  26. Pearson W. R. (1990) Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzymol. 183, 63–98.

    Article  PubMed  CAS  Google Scholar 

  27. Pearson W. R. and Lipman D. J. (1988) Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85, 2444–2448.

    Article  PubMed  CAS  Google Scholar 

  28. Rich B. E. and Steitz J. A. (1987) Human acidic ribosomal phosphoproteins P0, P1, and P2: analysis of cDNA clones, in vitro synthesis, and assembly. Mol. Cell Biol. 7, 4065–4074.

    PubMed  CAS  Google Scholar 

  29. Grabowski D. T., Pieper R. O., Futscher B. W., Deutsch W. A., Erickson L. C., and Kelley M. R. (1992) Expression of ribosomal phosphoprotein PO is induced by antitumor agents and increased in Mer-human tumor cell lines. Carcinogenesis 13, 259–263.

    Article  PubMed  CAS  Google Scholar 

  30. Potempa J., Korzus E., and Travis J. (1994) The serpin superfamily of proteinase inhibitors: structure, function, and regulation. J. Biol. Chem. 269, 15,957–15,960.

    PubMed  CAS  Google Scholar 

  31. Magal S. S., Jackman A., Pei X. F., Schlegel R., and Sherman L. (1998) Induction of apoptosis in human keratinocytes containing mutated p53 alleles and its inhibition by both the E6 and E7 oncoproteins. Int. J. Cancer 75, 96–104.

    Article  PubMed  CAS  Google Scholar 

  32. Lehman T. A., Modali R., Boukamp P., Stanek J., Bennett W. P., Welsh J. A., et al. (1993) p53 mutations in human immortalized epithelial cell lines. Carcinogenesis 14, 833–839.

    Article  PubMed  CAS  Google Scholar 

  33. Smith M. L. and Fornace A. J., Jr. (1997) p53-mediated protective responses to UV irradiation. Proc. Natl. Acad. Sci. USA 94, 12,255–12,257.

    Article  PubMed  CAS  Google Scholar 

  34. Sanchez Y. and Elledge S. J. (1995) Stopped for repairs. Bioessays 17, 545–548.

    Article  PubMed  CAS  Google Scholar 

  35. Chomczynski P. and Sacchi N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159.

    Article  PubMed  CAS  Google Scholar 

  36. Zhao S., Ooi S. L., and Pardee A. B. (1995) New primer strategy improves precision of differential display. Biotechniques 18, 842–846, 848, 850.

    PubMed  CAS  Google Scholar 

  37. Bauer D., Muller H., Reich J., Riedel H., Ahrenkiel V., Warthoe P., and Strauss M. (1993) Identification of differentially expressed mRNA species by an improved display technique (DDRT-PCR). Nucleic Acids Res. 21, 4272–4280.

    Article  PubMed  CAS  Google Scholar 

  38. Blanchard R. K. and Cousins R. J. (1996) Differential display of intestinal mRNAs regulated by dietary zinc. Proc. Natl. Acad. Sci. USA 93, 6863–6868.

    Article  PubMed  CAS  Google Scholar 

  39. Blok L. J., Kumar M. V., and Tindall D. J. (1995) Isolation of cDNAs that are differentially expressed between androgen-dependent and androgen-independent prostate carcinoma cells using differential display PCR. Prostate 26, 213–224.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Abts, H.F., Welss, T., Breuhahn, K., Ruzicka, T. (2000). UVB-Regulated Gene Expression in Human Keratinocytes. In: Walker, J.M., Keyse, S.M. (eds) Stress Response. Methods in Molecular Biology™, vol 99. Humana Press. https://doi.org/10.1385/1-59259-054-3:347

Download citation

  • DOI: https://doi.org/10.1385/1-59259-054-3:347

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-611-6

  • Online ISBN: 978-1-59259-054-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics