Skip to main content

The Development and Use of Phospho-Specific Antibodies to Study Protein Phosphorylation

  • Protocol
Book cover Stress Response

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 99))

Abstract

The reversible phosphorylation of proteins is a key mechanism whereby signalling cascades involved in the response to extracellular stimuli bring about changes in cellular function. These proteins include the kinases/phosphatases that form such signaling pathways as well as the transcription factors involved in inducible changes in gene expression (1). Phosphorylation induces changes in the function of these proteins either by induction of allosteric conformational changes in the protein itself or in the regulation of its interaction with other cellular factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hunter T. (1995) Protein kinase and phosphatases: the yin and yang of protein phosphorylation and signalling. Cell 80, 225–236

    Article  PubMed  CAS  Google Scholar 

  2. Van der Geer P., Luo K., Sefton B. M., and Hunter T. (1993) Phosphopeptide mapping and phosphoamino acid analysis on cellulose thin-layer plates, in Protein Phosphorylation (Hardie G., ed.), IRL, Oxford, pp. 31–58.

    Google Scholar 

  3. Yeargin J. and Haas M. (1995) Elevated levels of wild-type p53 induced by radiolabeling of cells leads to apoptosis or sustained growth arrest. Curr. Biol 5. 423–431.

    Article  PubMed  CAS  Google Scholar 

  4. Dover R., Jayaram Y., Patel K., and Chinery R. (1994) p53 expression in cultured cells following radioisotope labelling. J. CeU. Sci. 107, 1181–1184.

    CAS  Google Scholar 

  5. Bond J. A., Webley K., Wyllie F. S., Jones C. J., Craig A., Hupp T., and Wynford-Thomas D. (1999) p53-Dependent growth arrest and altered p53-immunoreactivity following metabolic labelling with 32P ortho-phosphate in human fibroblasts. Oncogene 18, 3788–3792.

    Article  PubMed  CAS  Google Scholar 

  6. Czernik A. J., Girault J.-A., Nairm A. C, Chen J., Snyder G., Kebabian J., and Greengard P. (1991) Production of phosphorylation state-specific antibodies, in Methods inEnzymology Vol. 201, Academic Press, London, pp. 264–283.

    Google Scholar 

  7. Ueno Y., Makino S., Kitagawa M., Nishimura S., Taya Y., and Hata T. (1995) Chemical synthesis of phosphopeptides using the arylthio group for protection of phosphate: application to identification of cdc2 kinase phosphorylation sites. Int. J. Peptide Protein Res. 46, 106–112

    Article  CAS  Google Scholar 

  8. Alberts A. S., Arias J., Hagiwara M., Montminy M. R., and Feramisco J. R. (1994) Recombinant cyclic-AMP response element-binding protein (creb) phosphorylated on ser-133 is transcription ally active upon its introduction into fibroblast nuclei. J. Biol Chem. 269, 7623–7630

    PubMed  CAS  Google Scholar 

  9. Weng Q. P., Kozlowski M., Belham C, Zhang A., Comb M., and Avruch J. (1998) Regulation of the p70S6 kinase by phosphorylation in vivo. J. BioL Chem. 273, 16,621–16,629.

    CAS  Google Scholar 

  10. Kitagawa M., Higashi H., Junag H.-K., Suzuki-Takahashi I., Ikeda M., Tamai. K., Kato J.-Y., Segawa K., Yoshida E., Nishimura S., and Taya Y. (1996) The consensus motif for phosphorylationby cyclinDl-cdk4 is different from that for phosphorylation by cyclin A/E-cdk2. EMBO J. 15, 7060–7069.

    PubMed  CAS  Google Scholar 

  11. Blaydes J. P. and Hupp T. R. (1998) DNA damage triggers DRB-resistant phosphorylation of human p53 at the CK2 site. Oncogens 17, 1045–1052.

    Article  CAS  Google Scholar 

  12. Lu H., Taya Y., Ikeda M., and Levine A. J., (1998) Ultraviolet radiation, but not γ radiation or etoposide-induced DNA damage, results in the phosphorylation of the murine p53 protein at serine 389. Proc. Natl. Acad. Sci. USA 95, 6399–6402.

    Article  PubMed  CAS  Google Scholar 

  13. Kapoor M. and Lozano G. (1998) Functional activation of p53 via phosphorylation following DNA damage by UV but not y radiation. Proc. Natl. Acad. Sci. USA 95, 2834–2837.

    Article  PubMed  CAS  Google Scholar 

  14. Waterman M. J., Stavridi E. S, Waterman J. L., and Halazonetis T. D. (1998) ATM-dependent activation of p53 involves dephosphorylation and association with 14-3-3 proteins. Nat. Genet. 19, 175–178.

    Article  PubMed  CAS  Google Scholar 

  15. Shieh S.-Y., Ikeda M., Taya Y., and Prives C. (1997) DNA dam age-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91, 325–334.

    Article  PubMed  CAS  Google Scholar 

  16. Siliciano J. D., Canman C. E., Taya Y., Sakaguchi K., Appella E., and Kastan M. (1997) DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev. 11, 3471–3481.

    Article  PubMed  CAS  Google Scholar 

  17. Harlow E. and Lane D. P. (1988) Antibodies: A Laboratory Manual. Cold Spring Harbor Laboratory, New York.

    Google Scholar 

  18. Atherton E. and Sheppard R. C. (1989) Solid-Phase Pep tide Synthesis. A Practical Approach. IRL Press.

    Google Scholar 

  19. Stephen C. W., Helminen P., and Lane D. P. (1995) Characterisation of epitopes on human p53 using phage-displayed peptide libraries: insights into antibodypeptide interactions. J. Mol. BioL 248, 58–78.

    Article  PubMed  CAS  Google Scholar 

  20. Ravera M. W., Carcamo J., Brissette R., Alam-Moghe A., Dedova O., Cheng W., Hsiao K. C., Klebanov D., Shen H., Tang P., Blume A., and Mandecki W. (1998) Identification of an allosteric binding site on the transcription factor p53 using a phage-displayed peptide library. Oncogene 16, 1993–1999.

    Article  PubMed  CAS  Google Scholar 

  21. Stephen C. and Lane D. P. (1992) Mutant conformation of p53: Precise epitope mapping using a filamentous phage epitope library. J. Mol. BioL 225, 577–583.

    Article  PubMed  CAS  Google Scholar 

  22. Vojtesek B., Dolezalova H., Lauerova L., Svitakova M., Havlis P., Kovarik J. Midgley C. A., and Lane D. P. (1995) Conformational changes in p53 analysed using new antibodies to the core DNA binding domain of the protein. Oncogene 10, 389–393.

    PubMed  CAS  Google Scholar 

  23. Wade-Evans A. and Jenkins J. R. (1985) Precise epitope mapping of the murine transformation-associated protein, p53. EMBO J. 4, 699–706.

    PubMed  CAS  Google Scholar 

  24. Hupp T. R. and Lane D. P. (1994) Allosteric activation of latent p53 tetramers. Curr. Biol 4, 865–875.

    Article  PubMed  CAS  Google Scholar 

  25. Craig A. L., Burch L., Vojtesek B., Mikutowska J., Thompson A., and Hupp T. R. (1999) Novel phosphorylation sites of human tumour suppressor protein p53 at Ser20 and Thr18 that disrupt the binding of MDM2 (mouse double minute 2) protein are modified in human cancers. Biochem. J. 342, 133–141.

    Article  PubMed  CAS  Google Scholar 

  26. Craig A. L., Blaydes J. P., Burch L. R., Thompson A. M., and Hupp T. R. (1999) Dephosphorylation of p53 at Ser20 after exposure to low levels of nonionizing radiation. Oncogens 18, 6305–6312.

    Article  CAS  Google Scholar 

  27. Meek D. W., Simon S., Kikkawa U. and Eckhart W. (1990) Thep53tumour suppressor Proteinisphosphorylatedatserine389bycaseinkinaseII. EMSO J. 9, 3252–3260.

    Google Scholar 

  28. Hupp T. R., Meek D. W., Midgely C. A., and Lane D. P. (1992) Regulation of the specific DNA binding function of p53. Cell 71, 875–886.

    Article  PubMed  CAS  Google Scholar 

  29. Sakaguchi K., Sakamoto H., Lewis M. S., Anderson C. W., Erickson J. W. Appella E., and Xie D. (1992) Phosphorylation of serine-392 stabilizes the tetramer formation oftumor-suppressorprotein-p53. Biochemistry 36, 10,117–10,124.

    Article  Google Scholar 

  30. Wang Y. and Roach P. J. (1993) Purification and assay of mammalian protein (serine/threonine) kinases, in Protein Phosphorylation (Hardie G., ed.), IRL., Oxford, pp. 121–142.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Blaydes, J.P., Vojtesek, B., Bloomberg, G.B., Hupp, T.R. (2000). The Development and Use of Phospho-Specific Antibodies to Study Protein Phosphorylation. In: Walker, J.M., Keyse, S.M. (eds) Stress Response. Methods in Molecular Biology™, vol 99. Humana Press. https://doi.org/10.1385/1-59259-054-3:177

Download citation

  • DOI: https://doi.org/10.1385/1-59259-054-3:177

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-611-6

  • Online ISBN: 978-1-59259-054-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics