Development of Physiological Models to Study Stress Protein Responses

  • Ted R. Hupp
Part of the Methods in Molecular Biology™ book series (MIMB, volume 99)


Multicellular animals are exposed routinely to oxidizing chemicals and radiation from the environment, as well as endogenous metabolic by-products that can damage DNA and proteins over the life-span of the cell. Such damage may contribute to tissue injury, promote aging, and is implicated in many chronic degenerative human diseases, including cancer. The interplay of environmental agents with factors that control mammalian cell integrity have been most widely studied by employing tumor cell lines as a convenient source of homogeneous and rapidly growing cells. Although it could be argued that the use of tumor cell lines precludes the formation of an accurate understanding of the mechanisms regulating the normal cellular damage response, the use of such cultured systems has facilitated the discovery of a host of regulatory enzymes and repair factors.


Stress Protein Quinolinic Acid Metaplastic Epithelium Hsp70 Protein Level Body Hyperthermia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kerr J. F. R., Wyllie A. H., and Currie A. R. (1971) Apoptosis: a basic biological phenomenon with wide ranging implications in tissue kinetics. British J. Cancer 26, 239–257.CrossRefGoogle Scholar
  2. 2.
    Quastler H. (1956) The nature of intestinal radiation death. Radiation Res. 4, 303–320.PubMedCrossRefGoogle Scholar
  3. 3.
    Petrakis N. L. (1957) Quantitative histological analysis of the early effects of whole-body irradiation on the mouse thymus. Radiation Res. 5, 569–572.CrossRefGoogle Scholar
  4. 4.
    Kastan M. B., Onyekwere O., Sidransky D., Vogelstein B., and Craig R. W. (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 51, 6304–6311.PubMedGoogle Scholar
  5. 5.
    Pietenpol J. A., Tokino T., Thiagalingam S., el-Deiry W. S., Kinzler K. W., and Vogelstein B. (1994) Sequence-specific transcriptional activation is essential for growth suppression by p53. Proc. Natl. Acad. Sci. USA 91, 1998–2002.PubMedCrossRefGoogle Scholar
  6. 6.
    Clarke A. R., Purdie C. A., Harrison D. J., Morris R. G., Bird C. C., Hooper M. L., and Wyllie A. H. (1993) Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362, 849–852.PubMedCrossRefGoogle Scholar
  7. 7.
    Lowe S. W., Schmitt E. M., Smith S. W., Osborne B. A., and Jacks T. (1993) p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362, 847–849.PubMedCrossRefGoogle Scholar
  8. 8.
    Lee J. M. and Bernstein A. (1993) p53 mutations increase resistance to ionizing radiation. Proc. Natl. Acad. Sci. USA 90, 5742–5746.PubMedCrossRefGoogle Scholar
  9. 9.
    Clarke A. R., Gledhill S., Hooper M. L., Bird C. C., and Wyllie A. H. (1994) p53 dependence of early apoptotic and proliferative responses within the mouse intestinal epithelium following gamma-irradiation. Oncogene 9, 1767–1773.PubMedGoogle Scholar
  10. 10.
    Merritt A. J., Potten C. S., Kemp C. J., Hickman J. A., Balmain A., Lane D. P., and Hall P. A. (1994) The role of p5 3 in spontaneous and radiation-induced apoptosis in the gastrointestinal tract of normal and p53-deficient mice. Cancer Res. 54, 614–617.PubMedGoogle Scholar
  11. 11.
    Midgley C. A., Owens B., Briscoe C. V., Thomas D. B., Lane D. P., and Hall P. A. (1995) Coupling between gamma irradiation, p53 induction and the apoptotic response depends upon cell type in vivo. J. Cell Sci. 108, 1843–1848.PubMedGoogle Scholar
  12. 12.
    Macleod K. F., Sherry N., Hannon G., Beach D., Tokino T., Kinzler K., Vogelstein B., and Jacks T. (1995) p53-dependent and independent expression of p21 during cell growth, differentiation, and DNA damage. Genes Dev . 9, 935–944.PubMedCrossRefGoogle Scholar
  13. 13.
    MacCallum D. E., Hupp T. R., Midgley C. A., Stuart D., Campbell S. J., Harper A., Walsh F. S., Wright E. G., Balmain A., Lane D. P., and Hall P. A. (1996) The p53 response to ionising radiation in adult and developing murine tissues. Oncogene 13, 2575–2587.PubMedGoogle Scholar
  14. 14.
    Rafferty J. A., Clarke A. R., Sellappan D., Koref M. S., Frayling I. M., and Margison G. P. (1996) Induction of murine O6-alkylguanine-DNA-alkyltransferase in response to ionising radiation is p53 gene dose dependent. Oncogene 12, 693–697.PubMedGoogle Scholar
  15. 15.
    Merritt A. J., Allen T. D., Potten C. S., and Hickman J. A. (1997) Apoptosis in small intestinal epithelial from p53-null mice: evidence for a delayed, p53-independent G2/M-associated cell death after gamma-irradiation. Oncogene 14, 2759–2766.PubMedCrossRefGoogle Scholar
  16. 16.
    Pritchard D. M., Watson A. J., Potten C. S., Jackman A. L., and Hickman J. A. (1997) Inhibition by uridine but not thymidine of p53-dependent intestinal apoptosis initiated by 5-fluorouracil: evidence for the involvement of RNA perturbation. Proc. Natl. Acad. Sci. USA 94, 1795–1799.PubMedCrossRefGoogle Scholar
  17. 17.
    Hardmeier R., Hoeger H., Fang-Kircher S., Khoschsorur A., and Lubec G. (1997) Transcription and activity of antioxidant enzymes after ionizing irradiation in radiation-resistant and radiation-sensitive mice. Proc. Natl. Acad. Sci. USA 94, 7572–7576.PubMedCrossRefGoogle Scholar
  18. 18.
    de Murcia J. M., Niedergang C., Trucco C., Ricoul M., Dutrillaux B., Mark M., et al. (1997) Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc. Natl. Acad. Sci. USA 94, 7303–7307.PubMedCrossRefGoogle Scholar
  19. 19.
    Biedermann K. A., Sun J. R., Giaccia A. J., Tosto L. M., and Brown J. M. (1991) scid mutation in mice confers hypersensitivity to ionizing radiation and a deficiency in DNA double-strand break repair. Proc. Natl. Acad. Sci. USA 88, 1394–1397.PubMedCrossRefGoogle Scholar
  20. 20.
    Lane D. P. (1992) p53, guardian of the genome. Nature 358, 15–16.PubMedCrossRefGoogle Scholar
  21. 21.
    Michalopoulos G. K. and DeFrances M. C. (1997) Liver regeneration. Science 276, 60–66.PubMedCrossRefGoogle Scholar
  22. 22.
    Bellamy C. O., Clarke A. R., Wyllie A. H., and Harrison D. J. (1997) p53 Deficiency in liver reduces local control of survival and proliferation, but does not affect apoptosis after DNA damage. FASEB J . 11, 591–599.PubMedGoogle Scholar
  23. 23.
    Raju V. S. and Maines M. D. (1996) Renal ischemia/reperfusion up-regulates heme oxygenase-1 (HSP32) expression and increases cGMP in rat heart. J. Pharmacol. Exp. Ther. 277, 1814–1822.PubMedGoogle Scholar
  24. 24.
    Nimura T., Weinstein P. R., Massa S. M., Panter S., and Sharp F. R. (1996) Heme oxygenase-1 (HO-1) protein induction in rat brain following focal ischemia. Brain Res. Mol. Brain Res. 37, 201–208.PubMedCrossRefGoogle Scholar
  25. 25.
    Mikawa S., Sharp F. R., Kamii H., Kinouchi H., Epstein C. J., and Chan P. K. (1995) Expression of c-fos and hsp70 mRNA after traumatic brain injury in ransgenic mice overexpressing CuZn-superoxide dismutase. Brain Res. Mol. Brain Res. 33, 288–294.PubMedCrossRefGoogle Scholar
  26. 26.
    Kamii H., Kinouchi H., Sharp F. R., Koistinaho J., Epstein C. J., and Chan P. H. (1994) Prolonged expression of hsp70 mRNA following transient focal cerebral ischemia in transgenic mice overexpressing CuZn-superoxide dismutase. J. Cereb. Blood Flow Metab. 14, 478–486.PubMedGoogle Scholar
  27. 27.
    Eizenberg O., Faber-Elman A., Gottlieb E., Oren M., Rotter V., and Schwartz M. (1996) p53 plays a regulatory role in differentiation and apoptosis of central nervous system-associated cells. Mol. Cell Biol. 16, 5178–5185.PubMedGoogle Scholar
  28. 28.
    Eizenberg O., Faber-Elman A., Gottlieb E., Oren M., Rotter V., and Schwartz M. (1995) Direct involvement of p53 in programmed cell death of oligodendrocytes. EMBO J. 14, 1136–1144.PubMedGoogle Scholar
  29. 29.
    Hughes P. E., Alexi T., and Schreiber S. S. (1997) A role for the tumour suppressor gene p53 in regulating neuronal apoptosis. Neuroreport 8, 5–12.CrossRefGoogle Scholar
  30. 30.
    Sakhi S., Sun N., Wing L. L., Mehta P., and Schreiber S. S. (1996) Nuclear accumulation of p53 protein following kainic acid-induced seizures. Neuroreport 7, 493–496.PubMedCrossRefGoogle Scholar
  31. 31.
    Sakhi S., Gilmore W., Tran N. D., and Schreiber S. S. (1996) p53-deficient mice are protected against adrenalectomy-induced apoptosis. Neuroreport 8, 233–235.PubMedCrossRefGoogle Scholar
  32. 32.
    Sakhi S., Bruce A., Sun N., Tocco G., Baudry M., and Schreiber S. S. (1997) Induction of tumor suppressor p53 and DNA fragmentation in organotypic hippocampal cultures following excitotoxin treatment. Exp. Neurol. 145, 81–88.PubMedCrossRefGoogle Scholar
  33. 33.
    Hughes P. E., Alexi T., Yoshida T., Schreiber S. S., and Knusel B. (1996) Excitotoxic lesion of rat brain with quinolinic acid induces expression of p53 messenger RNA and protein and p53-inducible genes Bax and Gadd-45 in brain areas showing DNA fragmentation. Neuroscience 74, 1143–1160.PubMedGoogle Scholar
  34. 34.
    Anderson K. D., Panayotatos N., Corcoran T. L., Lindsay R. M., and Wiegand S. J. (1996) Ciliary neurotrophic factor protects striatal output neurons in an animal model of Huntington disease. Proc. Natl. Acad. Sci. USA 93, 7346–7351.PubMedCrossRefGoogle Scholar
  35. 35.
    Dragunow M., Faull R. L., Lawlor P., Beilharz E. J., Singleton K., Walker E. B., and Mee E. (1995) In situ evidence for DNA fragmentation in Huntington’s disease striatum and Alzheimer’s disease temporal lobes. Neuroreport 6, 1053–1057.PubMedCrossRefGoogle Scholar
  36. 36.
    Hartl F. U. (1996) Molecular chaperones in cellular protein folding. Nature 381, 571–579.PubMedCrossRefGoogle Scholar
  37. 37.
    Li G. C., Mivechi N. F., and Weitzel G. (1995) Heat shock proteins, thermotolerance, and their relevance to clinical hyperthermia. Int. J. Hyperthermia 11, 459–468.PubMedCrossRefGoogle Scholar
  38. 38.
    Li G. C., Li L. G., Liu Y. K., Mak J. Y., Chen L. L., and Lee W. M. (1991) Thermal response of rat fibroblasts stably transfected with the human 70-kDa heat shock protein-encoding gene. Proc. Natl. Acad. Sci. USA 88, 1681–1685.PubMedCrossRefGoogle Scholar
  39. 39.
    Minowada G. and Welch W. J. (1995) Clinical implications of the stress response. J. Clin. Invest. 95, 3–12.PubMedCrossRefGoogle Scholar
  40. 40.
    Hohfeld J. and Jentsch S. (1997) GrpE-like regulation of the hsc70 chaperone by the anti-apoptotic protein BAG-1. EMBO J. 16, 6209–6216. (see also erratum in EMBO J. 1998 17: 847.PubMedCrossRefGoogle Scholar
  41. 41.
    Takayama S., Bimston D. N., Matsuzawa S., Freeman B. C., Aime-Sempe C., Xie Z., Morimoto R. I., and Reed J. C. (1997) BAG-1 modulates the chaperone activity of Hsp70/Hsc70. EMBO J. 16, 4887–4896.PubMedCrossRefGoogle Scholar
  42. 42.
    Bimston D., Song J., Winchester D., Takayama S., Reed J. C., and Morimoto R. I. (1998) BAG-1, a negative regulator of Hsp70 chaperone activity, uncouples nucleotide hydrolysis from substrate release. EMBO J. 17, 6871–6878.PubMedCrossRefGoogle Scholar
  43. 43.
    Matsuzawa S., Takayama S., Froesch B. A., Zapata J. M., and Reed J. C. (1998) p53-inducible human homologue of Drosophila seven in absentia (Siah) inhibits cell growth: suppression by BAG-1. EMBO J. 17, 2736–2747.PubMedCrossRefGoogle Scholar
  44. 44.
    Donnelly T. J., Sievers R. E., Vissern F. L., Welch W. J., and Wolfe C. L. (1992) Heat shock protein induction in rat hearts. A role for improved myocardial salvage after ischemia and reperfusion? Circulation 85, 769–778.PubMedGoogle Scholar
  45. 45.
    Currie R. W., Tanguay R. M., and Kingma J. G., Jr. (1993) Heat-shock response and limitation of tissue necrosis during occlusion/reperfusion in rabbit hearts. Circulation 87, 963–971.PubMedGoogle Scholar
  46. 46.
    Suzuki K., Sawa Y., Kaneda Y., Ichikawa H., Shirakura R., and Matsuda H. (1997) In vivo gene transfection with heat shock protein 70 enhances myocardial tolerance to ischemia-reperfusion injury in rat. J. Clin. Invest. 99, 1645–1650.PubMedCrossRefGoogle Scholar
  47. 47.
    Chaston G., Perdizet G. A., Anderson C., Pleau C., Berman M., and Schweiser R. (1990) Heat shock protects rat kidneys against warm ischaemic injury. Curr. Surg. 47, 420–422.Google Scholar
  48. 48.
    Perdizet G. A., Heffron T. G., Buckingham F. C., Salciunas P. J., Gaber A. O., Stuart F. P., and Thistlewaite J. R. (1989) Stress conditioning: a novel approach to organ preservation. Curr. Surg. 46, 23–25.Google Scholar
  49. 49.
    Shen R. N., Crabtree W. N., Wu B., Young P., Sandison G. A., Hornback N. B., and Shidnia H. (1992) A reliable method for quantitating chromatin fragments by flow cytometry to predict the effect of total body irradiation and hyperthermia on mice. Int. J. Radiat. Oncol. Biol. Phys. 24, 139–143.PubMedGoogle Scholar
  50. 50.
    Morimoto R. I. (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 12, 3788–3796.PubMedCrossRefGoogle Scholar
  51. 51.
    Shi Y., Mosser D. D., and Morimoto R. I. (1998) Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev. 12, 654–666.PubMedCrossRefGoogle Scholar
  52. 52.
    Satyal S. H., Chen D., Fox S. G., Kramer J. M., and Morimoto R. I. (1998) Negative regulation of the heat shock transcriptional response by HSBP1. Genes Dev. 12, 1962–1974.PubMedCrossRefGoogle Scholar
  53. 53.
    Kline M. P. and Morimoto R. I. (1997) Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation. Mol. Cell. Biol. 17, 2107–2115.PubMedGoogle Scholar
  54. 54.
    Tanabe M., Kawazoe Y., Takeda S., Morimoto R. I., Nagata K., and Nakai A. (1998) Disruption of the HSF3 gene results in the severe reduction of heat shock gene expression and loss of thermotolerance. EMBO J. 17, 1750–1758.PubMedCrossRefGoogle Scholar
  55. 55.
    Nakai A., Kawazoe Y., Tanabe M., Nagata K., and Morimoto R. I. (1995) The DNA-binding properties of two heat shock factors, HSF1 and HSF3, are induced in the avian erythroblast cell line HD6. Mol. Cell. Biol. 15, 5268–5278.PubMedGoogle Scholar
  56. 56.
    Kanei-Ishii C., Tanikawa J., Nakai A., Morimoto R. I., and Ishii S. (1997) Activation of heat shock transcription factor 3 by c-Myb in the absence of cellular stress. Science 277, 246–248.PubMedCrossRefGoogle Scholar
  57. 57.
    Blake M. J., Fargnoli J., Gershon D., and Holbrook N. J. (1991) Concomitant decline in heat-induced hyperthermia and HSP70 mRNA expression in aged rats. Am. J. Physiol. 260, R663–667.PubMedGoogle Scholar
  58. 58.
    Cummings D. E., Brandon E. P., Planas J. V., Motamed K., Idzerda R. L., and McKnight G. S. (1996) Genetically lean mice result from targeted disruption of the RII beta subunit of protein kinase A. Nature 382, 622–626.PubMedCrossRefGoogle Scholar
  59. 59.
    Blake M. J., Gershon D., Fargnoli J., and Holbrook N. J. (1990) Discordant expression of heat shock protein mRNAs in tissues of heat-stressed rats. J. Biol. Chem. 265, 15275–15279.PubMedGoogle Scholar
  60. 60.
    Nakai A., Tanabe M., Kawazoe Y., Inazawa J., Morimoto R. I., and Nagata K. (1997) HSF4, a new member of the human heat shock factor family which lacks properties of a transcriptional activator. Mol. Cell. Biol. 17, 469–481.PubMedGoogle Scholar
  61. 61.
    Fiorenza M. T., Farkas T., Dissing M., Kolding D., and Zimarino V. (1995) Complex expression of murine heat shock transcription factors. Nucleic Acids Res. 23, 467–474.PubMedCrossRefGoogle Scholar
  62. 62.
    Hu Y., Metzler B., and Xu Q. (1997) Discordant activation of stress-activated protein kinases or c-Jun NH2-terminal protein kinases in tissues of heatstressed mice. J. Biol. Chem. 272, 9113–9119.PubMedCrossRefGoogle Scholar
  63. 63.
    Locke M., Noble E. G., and Atkinson B. G. (1990) Exercising mammals synthesize stress proteins. Am. J. Physiol. 258, C723–729.PubMedGoogle Scholar
  64. 64.
    Locke M., Atkinson B. G., Tanguay R. M., and Noble E. G. (1994) Shifts in type I fiber proportion in rat hindlimb muscle are accompanied by changes in HSP72 content. Am. J. Physiol. 266, C1240–1246.PubMedGoogle Scholar
  65. 65.
    Locke M. and Noble E. G. (1995) Stress proteins: the exercise response. Can. J. Appl. Physiol. 20, 155–167.PubMedGoogle Scholar
  66. 66.
    Hernando R. and Manso R. (1997) Muscle fibre stress in response to exercise: synthesis, accumulation and isoform transitions of 70-kDa heat-shock proteins. Eur. J. Biochem. 243, 460–467.PubMedCrossRefGoogle Scholar
  67. 67.
    He C., Merrick B. A., Patterson R. M., and Selkirk J. K. (1995) Altered protein synthesis in p53 null and hemizygous transgenic mouse embryonic fibroblasts. Appl. Theor. Electrophor. 5, 15–24.PubMedGoogle Scholar
  68. 68.
    Agoff S. N., Hou J., Linzer D. I., and Wu B. (1993) Regulation of the human hsp70 promoter by p53. Science 259, 84–87.PubMedCrossRefGoogle Scholar
  69. 69.
    Nitta M., Okamura H., Aizawa S., and Yamaizumi M. (1997) Heat shock induces transient p53-dependent cell cycle arrest at G1/S. Oncogene 15, 561–568.PubMedCrossRefGoogle Scholar
  70. 70.
    Pinhasi-Kimhi O., Michalovitz D., Ben-Zeev A., and Oren M. (1986) Specific interaction between the p53 cellular tumour antigen and major heat shock proteins. Nature 320, 182–184.PubMedCrossRefGoogle Scholar
  71. 71.
    Sugito K., Yamane M., Hattori H., Hayashi Y., Tohnai I., Ueda M., Tsuchida N., and Ohtsuka K. (1995) Interaction between hsp70 and hsp40, eukaryotic homologues of DnaK and DnaJ, in human cells expressing mutant-type p53. FEBSLett. 358, 161–164.CrossRefGoogle Scholar
  72. 72.
    Sepehrnia B., Paz I. B., Dasgupta G., and Momand J. (1996) Heat shock protein 84 forms a complex with mutant p53 protein predominantly within a cytoplasmic compartment of the cell. J. Biol. Chem. 271, 15,084–15,090.PubMedCrossRefGoogle Scholar
  73. 73.
    Dasgupta G. and Momand J. (1997) Geldanamycin prevents nuclear translocation of mutant p53. Exp. Cell Res. 237, 29–37.PubMedCrossRefGoogle Scholar
  74. 74.
    Gordon S. A., Hoffman R. A., Simmons R. L., and Ford H. R. (1997) Induction of heat shock protein 70 protects thymocytes against radiation-induced apoptosis. Arch. Surg. 132, 1277–1282.PubMedGoogle Scholar
  75. 75.
    Mehlen P., Schulze-Osthoff K., and Arrigo A. P. (1996) Small stress proteins as novel regulators of apoptosis. Heat shock protein 27 blocks Fas/APO-1-and staurosporine-induced cell death. J. Biol. Chem. 271, 16,510–16,514.PubMedCrossRefGoogle Scholar
  76. 76.
    Polla B. S., Kantengwa S., Francois D., Salvioli S., Franceschi C., Marsac C., and Cossarizza A. (1996) Mitochondria are selective targets for the protective effects of heat shock against oxidative injury. Proc. Natl. Acad. Sci. USA 93, 6458–6463.PubMedCrossRefGoogle Scholar
  77. 77.
    Li W. X., Chen C. H., Ling C. C., and Li G. C. (1996) Apoptosis in heatinduced cell killing: the protective role of hsp-70 and the sensitization effect of the c-myc gene. Radiat. Res. 145, 324–330.PubMedCrossRefGoogle Scholar
  78. 78.
    Kaul S. C., Duncan E. L., Englezou A., Takano S., Reddel R. R., Mitsui Y., and Wadhwa R. (1998) Malignant transformation of NIH3T3 cells by overexpression of mot-2 protein. Oncogene 17, 907–911.PubMedCrossRefGoogle Scholar
  79. 79.
    Wadhwa R., Takano S., Robert M., Yoshida A., Nomura H., Reddel R. R., Mitsui Y., and Kaul S. C. (1998) Inactivation of tumor suppressor p53 by mot-2, a hsp70 family member. J. Biol. Chem. 273, 29,586–29,591.PubMedCrossRefGoogle Scholar
  80. 80.
    Schulte T. W. and Neckers L. M. (1998) The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer Chemother. Pharmacol. 42, 273–279.PubMedCrossRefGoogle Scholar
  81. 81.
    An W. G., Schnur R. C., Neckers L., and Blagosklonny M. V. (1997) Depletion of p185erbB2, Raf-1 and mutant p53 proteins by geldanamycin derivatives correlates with antiproliferative activity. Cancer Chemother. Pharmacol. 40, 60–64.PubMedCrossRefGoogle Scholar
  82. 82.
    Stebbins C. E., Russo A. A., Schneider C., Rosen N., Hartl F. U., and Pavletich N. P. (1997) Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 89, 239–250.PubMedCrossRefGoogle Scholar
  83. 83.
    Blagosklonny M. V., Toretsky J., and Neckers L. (1995) Geldanamycin selectively destabilizes and conformationally alters mutated p53. Oncogene 11, 933–939.PubMedGoogle Scholar
  84. 84.
    Mimnaugh E. G., Chavany C., and Neckers L. (1996) Polyubiquitination and proteasomal degradation of the p185c-erbB-2 receptor protein-tyrosine kinase induced by geldanamycin. J. Biol. Chem. 271, 22,796–22,801.PubMedCrossRefGoogle Scholar
  85. 85.
    Whitesell L., Sutphin P., An W. G., Schulte T., Blagosklonny M. V., and Neckers L. (1997) Geldanamycin-stimulated destabilization of mutated p53 is mediated by the proteasome in vivo. Oncogene 14, 2809–2816.PubMedCrossRefGoogle Scholar
  86. 86.
    Blagosklonny M. V., Toretsky J., Bohen S., and Neckers L. (1996) Mutant conformation of p53 translated in vitro or in vivo requires functional HSP90. Proc. Natl. Acad. Set USA 93, 8379–8383.CrossRefGoogle Scholar
  87. 87.
    Sasaki K., Yasuda H., and Onodera K. (1979) Growth inhibition of virus transformed cells in vitro and antitumor activity in vivo of geldanamycin and its derivatives. J. Antibiot. (Tokyo) 32, 849–851.Google Scholar
  88. 88.
    Scheibel T. and Buchner J. (1998) The Hsp90 complex—a super-chaperone machine as a novel drug target. Biochem. Pharmacol. 56, 675–682.PubMedCrossRefGoogle Scholar
  89. 89.
    Supko J. G., Hickman R. L., Grever M. R., and Malspeis L. (1995) Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent. Cancer Chemother. Pharmacol. 36, 305–315.PubMedCrossRefGoogle Scholar
  90. 90.
    Neshat K., Sanchez C. A., Galipeau P. C., Cowan D. S., Ramel S., Levine D. S., and Reid B. J. (1994) Barrett’s esophagus: a model of human neoplastic progression. Cold Spring Harb. Symp. Quant. Biol. 59, 577–583.PubMedGoogle Scholar
  91. 91.
    Vogelstein B. and Kinzler K. W. (1994) Colorectal cancer and the intersection between basic and clinical research. Cold Spring Harb. Symp. Quant. Biol. 59, 517–521.PubMedGoogle Scholar
  92. 92.
    Neshat K., Sanchez C. A., Galipeau P. C., Blount P. L., Levine D. S., Joslyn G., and Reid B. J. (1994) p53 mutations in Barrett’s adenocarcinoma and highgrade dysplasia. Gastroenterology 106, 1589–1595.PubMedGoogle Scholar
  93. 93.
    Campomenosi P., Conio M., Bogliolo M., Urbini S., Assereto P., Aprile A., Monti P., Aste H., Lapertosa G., Inga A., Abbondandolo A., and Fronza G. (1996) p53 is frequently mutated in Barrett’s metaplasia of the intestinal type. Cancer Epidemiol. Biomarkers Prev. 5, 559–565.PubMedGoogle Scholar
  94. 94.
    Tobey N. A. and Orlando R. C. (1991) Mechanisms of acid injury to rabbit esophageal epithelium. Role of basolateral cell membrane acidification. Gastroenterology 101, 1220–1228.PubMedGoogle Scholar
  95. 95.
    Seto Y. and Kobori O. (1993) Role of reflux oesophagitis and acid in the development of columnar epithelium in the rat oesophagus. Br. J. Surg. 80, 467–470.PubMedCrossRefGoogle Scholar
  96. 96.
    Jaskiewicz K., Louw J. and Anichkov N. (1994) Barrett’s oesophagus: mucin composition, neuroendocrine cells, p53 protein, cellular proliferation and differentiation. Anticancer Res. 14, 1907–1912.PubMedGoogle Scholar
  97. 97.
    Ramel S., Reid B. J., Sanchez C. A., Blount P. L., Levine D. S., Neshat K., Haggitt R. C., Dean P. J., Thor K., and Rabinovitch P. S. (1992) Evaluation of p53 protein expression in Barrett’s esophagus by two-parameter flow cytometry. Gastroenterology 102, 1220–1228.PubMedGoogle Scholar
  98. 98.
    Reid B. J., Barrett M. T., Galipeau P. C., Sanchez C. A., Neshat K., Cowan D. S., and Levine D. S. (1996) Barrett’s esophagus: ordering the events that lead to cancer. Eur. J. Cancer Prev 5Suppl 2, 57–65.PubMedCrossRefGoogle Scholar
  99. 99.
    Casson A. G., Tammemagi M., Eskandarian S., Redston M., McLaughlin J., and Ozcelik H. (1998) p53 alterations in oesophageal cancer: association with clinicopathological features, risk factors, and survival. Mol. Pathol. 51, 71–79.PubMedCrossRefGoogle Scholar
  100. 100.
    Hopwood D., Moitra S., Vojtesek B., Johnston D. A., Dillon J. F., and Hupp T. R. (1997) Biochemical analysis of the stress protein response in human oesophageal epithelium. Gut 41, 156–163.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2000

Authors and Affiliations

  • Ted R. Hupp
    • 1
  1. 1.Department of Molecular and Cellular PathologyNinewells Hospital and Medical School, University of DundeeDundee

Personalised recommendations