Monitoring the Activation of Stress-Activated Protein Kinases Using GAL4 Fusion Transactivators

  • Chao-Feng Zheng
  • Li Xu
Part of the Methods in Molecular Biology™ book series (MIMB, volume 99)


A multicellular organism is composed of many types of cells performing specialized functions. Cells have to communicate with each other for the organism to function as a whole. They do so at many levels and by various mechanisms. A cell’s identity is determined by the proteins synthesized within it. Therefore, the regulation of gene expression, especially at the transcriptional level, is a key mechanism of controlling cell growth and differentiation. To control transcription in response to extracellular stimuli originating either from other cells or the surrounding environment, signals from outside the cell are transmitted to the transcription machinery inside the nucleus via a variety of signaling molecules. These include receptors, adaptor proteins, G-proteins, protein kinases, and protein phosphatases, which form intricate networks known as signal transduction pathways (1, 2, 3, 4).


Reporter Plasmid Extracellular Stimulus Luciferase Activity Assay Luciferase Assay Reagent Yeast GAL4 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Boulikas T. (1995) Phosphorylation of transcription factors and control of the cell cycle. Crit. Rev. Eukaryotic Gene Express. 5, 1–77.Google Scholar
  2. 2.
    Hunter T. and Karin M. (1992) The regulation of transcription by phosphorylation. Cell 70, 357–387.CrossRefGoogle Scholar
  3. 3.
    Karin M. and Hunter T. (1995) Transcriptional control by protein phosphorylation: signal transmission from the cell surface to the nucleus. Curr. Biol. 5, 747–757.PubMedCrossRefGoogle Scholar
  4. 4.
    Treisman R. (1996) Regulation of transcription by MAP kinase cascades. Curr. Opin. Cell Biol. 8, 205–215.PubMedCrossRefGoogle Scholar
  5. 5.
    Ray L. B. and Sturgill T. W. (1987) Rapid stimulation by insulin of a serine/ threonine kinase in 3T3-L1 adipocytes that phosphorylates microtubule-associated protein 2 in vitro. Proc. Natl. Acad. Sci. USA 84, 1502–1506.PubMedCrossRefGoogle Scholar
  6. 6.
    Kultz D. (1998) Phylogenetic and functional classification of mitogen-and stressactivated protein kinases. J. Mol. Evol. 46, 571–588.PubMedCrossRefGoogle Scholar
  7. 7.
    Levin D. E. and Errede B. (1995) The proliferation of MAP kinase signaling pathways in yeast. Curr. Opin. Cell Biol. 7, 197–202.PubMedCrossRefGoogle Scholar
  8. 8.
    Waskiewicz A. J. and Cooper J. A. (1995) Mitogen and stress response pathways: MAP kinase cascades and phosphatase regulation in mammals and yeast. Curr. Opin. Cell Biol. 7, 798–805.PubMedCrossRefGoogle Scholar
  9. 9.
    Cobb M. and Coldsmith E. J. (1995) How MAP kinases are regulated. J. Biol. Chem. 270, 14,843–14,846.PubMedCrossRefGoogle Scholar
  10. 10.
    Boulton T. G., Nye S. H., Robbins D. J., Ip N. Y., Radziejewska E., Morgenbesser S. D., DePinho R. A., Panayotatos N., Cobb M. H., and Yancopoulos G. D. (1991) ERK’s: a family of protein serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 65, 663–675.PubMedCrossRefGoogle Scholar
  11. 11.
    Kyriakis J. M. et al. (1994) The stress-activated protein kinase subfamily of c-Jun kinases, Nature 369, 156–160.PubMedCrossRefGoogle Scholar
  12. 12.
    Derijard B., Hibi M., Wu I.-H., Barrett T., Su B., Deng T., Karin M., and Davis R. (1994) JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76, 1025–1037.PubMedCrossRefGoogle Scholar
  13. 13.
    Han J., Bibbs L., and Ulevitch R. J. (1994) A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265, 808–811.PubMedCrossRefGoogle Scholar
  14. 14.
    Chen R. H., Sarnecki C., and Blenis J. (1992) Nuclear localization and regulation of erk-and rsk-encoded protein kinases. Mol. Cell. Biol. 12, 915–927.PubMedGoogle Scholar
  15. 15.
    Traverse S., Gomez N., Paterson H., Marshall C., and Cohen P. (1992) Sustained activation of the mitogen-activated protein (MAP) kinase cascade may be required for differentiation of PC 12 cells. Comparison of the effects of nerve growth factor and epidermal growth factor. Biochem. J. 288, 351–355.PubMedGoogle Scholar
  16. 16.
    Ma J. and Ptashne M. (1987) Deletion analysis of GAL4 defines two transcriptional activating segments. Cell 48, 847–853.PubMedCrossRefGoogle Scholar
  17. 17.
    Sadowski I. and Ptashne M. (1989) A vector for expressing GAL4(1-147) fusions in mammalian cells. Nucleic Acids Res. 17, 7539.PubMedCrossRefGoogle Scholar
  18. 18.
    Fields S. and Song O. (1989) A novel genetic system to detect protein-protein interactions. Nature 340, 245–246.PubMedCrossRefGoogle Scholar
  19. 19.
    Mendelsohn A. R. and Brent R., (1994) Applications of interaction traps/twohybrid systems to biotechnology research. Curr. Opin. Biotech. 5, 482–486.PubMedCrossRefGoogle Scholar
  20. 20.
    Allen J. B., Walberg M. W., Edwards M. C., and Elledge S. J. (1995) Finding prospective partners in the library: the two-hybrid system and phage display find a match. Trends Biochem. Sci. 20, 511–517.PubMedCrossRefGoogle Scholar
  21. 21.
    Jausons-Loffreda N., Balaguer P., Roux S., Fuentes M., Pons M., Nicolas J. C., Gelmini S., and Pazzagli M. (1994) Chimeric receptors as a tool for luminescent measurement of biological activities of steroid hormones. J. Biolumin. Chemilumin. 9, 217–221.PubMedCrossRefGoogle Scholar
  22. 22.
    Braselmann S., Graninger P., and Busslinger M. (1993) A selective transcriptional induction system for mammalian cells based on Gal4-estrogen receptor fusion proteins. Proc. Natl. Acad. Sci. USA 90, 1657–1661.PubMedCrossRefGoogle Scholar
  23. 23.
    Louvion J.-F., Havaux-Corpf B., and Picard D. (1993) Fusion of GAL4-VP16 to a steroid-binding domain provides a tool for gratuitous induction of galactoseresponsive genes in yeast. Gene 131, 129–134.PubMedCrossRefGoogle Scholar
  24. 24.
    Dang C. V., Barrett J., Billa-Garcia M., Resar L. M. S., Kato G., and Fearon E. R. (1991) Intracellular leucine zipper interactions suggest c-Myc hetero-oligomerization. Mol. Cell. Biol. 11, 945–962.Google Scholar
  25. 25.
    Flint K. J. and Jones N. C. (1991) Differential regulation of three members of the ATF/CREB family of DNA-binding proteins. Oncogene 6, 2019-1026.Google Scholar
  26. 26.
    Xing J., Ginty D. D., and Greenberg M. E. (1996) Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science, 273, 959–963.PubMedCrossRefGoogle Scholar
  27. 27.
    Xu L., Sanchez T., and Zheng C.-F. (1997) In vivo signal transduction pathway reporting systems. Strategies 10, 1–3.Google Scholar
  28. 28.
    Enslen H., Tokumitsu H., Stork P. J. S., Davis R. J., and Soderling T. R. (1996) Regulation of mitogen-activated protein kinases by a calcium/ calmodulin-dependent protein kinase cascade. Proc. Natl. Acad. Sci. USA 93, 10,803–10,808.PubMedCrossRefGoogle Scholar
  29. 29.
    Marais R. Wynne J., and Treisman R. (1993) The SRF accessory protein Elk1 contains a growth factor-regulated transcriptional activation domain. Cell 73, 381–393.PubMedCrossRefGoogle Scholar
  30. 30.
    Minden A., Lin A., Claret F. X., Abo A., and Karin M. (1995) Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPase Rac and cdc42Hs. Cell 81, 1147–1157.PubMedCrossRefGoogle Scholar
  31. 31.
    Lin A. Minden A., Martinetto H., Claret F. X., Lange-Carter C., Mercurio F., Johnson G. L., and Karin M. (1995) Identification of a dual specificity kinase that activates the Jun kinases and p38-Mpk2. Science 268, 286–289.PubMedCrossRefGoogle Scholar
  32. 32.
    Smeal T., Hibi M., and Karin M. (1994) Altering the specificity of signal transduction cascades: positive regulation of c-Jun transcriptional activity by protein kinase A. EMBO J. 13, 6006–6010.PubMedGoogle Scholar
  33. 33.
    Lee J.-S., See R. H., Deng T., and Shi Y. (1996) Adenovirus E1 A downregulates cJun-and JunB-mediated transcription by targeting their coactivator p300. Mol. Cell. Biol. 16, 4312–4326.PubMedGoogle Scholar
  34. 34.
    Wang X. Z. and Ron D. (1996) Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD 153) by p38 MAP kinase. Science 272, 1347–1349.PubMedCrossRefGoogle Scholar
  35. 35.
    Xu L., Sanchez T., and Zheng C.-F. (1997) Signal Transduction Pathway reporting systems using cis-acting enhancer elements. Strategies 10, 79–80.Google Scholar
  36. 36.
    Xu L. and Zheng C.-F. (1997) New fusion trans-activator plasmids for studying signal transduction pathways. Strategies, 10, 81–83.Google Scholar
  37. 37.
    Sanchez T., Xu L., Buchanan M., and Zheng C.-F. (1998) Optimizing transfection conditions for studying signal transduction pathways. Strategies 11, 52,53.Google Scholar
  38. 38.
    de Wet J. R., Wood K. V., DeLuca M., Helinski D. R., and Subramani S. (1987) Firefly luciferase gene: Structure and expression in mammalian cells. Mol. Cell. Biol. 7, 725–737.PubMedGoogle Scholar
  39. 39.
    Thompson J. F., Hayes L. S., and Lloyd D. B. (1993) Modulation of firefly luciferase stability and impact on studies of gene expression. Gene 103, 171–177.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2000

Authors and Affiliations

  • Chao-Feng Zheng
    • 1
  • Li Xu
    • 1
  1. 1.Stratagene Cloning Systems, IncLa Jolla

Personalised recommendations