Skip to main content

Activation of the Mitogen-Activated Protein Kinase Pathway by TGFβ

  • Protocol
Book cover Transforming Growth Factor-Beta Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 142))

Abstract

The mitogen-activated protein kinase (MAPK) superfamily includes three major subfamilies: extracellular signal-regulated kinase (Erks), c-Jun-N-terminal kinases (JNKs)/stress-activated protein kinases (SAPKs), and p38 kinases (13). Activation of MAPK requires the phosphorylation of both tyrosine (Y) and threonine (T) residues in a conserved motif: TEY for Erks, TPY for SAPKs, and TGY for p38 (13). These MAPKs, in turn, activate downstream substrates by phosphorylating a minimum consensus target sequence of Ser/Thr-Pro (1,2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Treisman R. (1996) Regulation of transcription by MAP Kinasecascades. Curr. Opin. CellBiol. 8, 205–215.

    Article  CAS  Google Scholar 

  2. Davis R.J. (1995) Transcriptional regulation by MAP kinases. Mol. Reprod. Dev. 42, 459–467.

    Article  PubMed  CAS  Google Scholar 

  3. Cano E. and Mahadevan L. C. (1995) Parallel signal processing among mammalian MAPKs. Trends Biochem. Sci. 20, 117–122.

    Article  PubMed  CAS  Google Scholar 

  4. Mulder K. M. and Morris S. L. (1992) Activation of p21ras by transforming growth factor β in epithelial cells. J. Biol. Chem. 267, 5029–5031.

    PubMed  CAS  Google Scholar 

  5. Hartsough M. T. and Mulder K. M. (1995) Transforming growth factor β activation of p44mapk in proliferating cultures of epithelial cells. J. Biol. Chem. 270, 7117–7124.

    Article  PubMed  CAS  Google Scholar 

  6. Frey R. S. and Mulder K. M. (1997) TGFβ regulation of mitogen-activated protein kinases in human breast cancer cells. Cancer Lett. 117, 41–50

    Article  PubMed  CAS  Google Scholar 

  7. Frey R. S. and Mulder K. M. (1997) Involvement of extracellular signal-regulated kinase 2 and stress-activated protein kinase/Jun N-terminal kinase activation by transforming growth factor β in the negative growth control of breast cancer cells. Cancer Res. 57, 628–633.

    PubMed  CAS  Google Scholar 

  8. Yue J., Frey R. S., and Mulder K. M. (1999) Cross-talk between the Smad1 and Ras/MEK signaling pathways for TGFβ, Oncogene 18, 2033–2037.

    Article  PubMed  CAS  Google Scholar 

  9. Hartsough M. T., Frey R., Zipfel P., Buard A., Cook S., McCormick F., and Mulder K. M. (1996). Altered transforming growth factor β signaling in epithelial cells when Ras activation is blocked. J. Biol. Chem. 271, 22,368–22,375.

    Article  PubMed  CAS  Google Scholar 

  10. Yue J., Buard A., and Mulder K. M. (1998). Blockade of TGFβ3 up-regulation of p27Kip1 and p21Cip1 by expression of RasN 17 in epithelial cells. Oncogene 17, 47–55.

    Article  PubMed  CAS  Google Scholar 

  11. Mucsi I., Skorecki K. L., and Goldberg H. J. (1996) Extracellular signal-regulated kinase and the small GTP-binding protein, Rac, contributing to the effects of transforming growth factor β1 on gene expression. J. Biol. Chem. 271, 16,567–16,572.

    Article  PubMed  CAS  Google Scholar 

  12. Atfi A., Djelloul S., Chastre E., Davis R. R., and Gespach C. (1997) Evidence for a role of Rho-like GTPase and stress-activated protein kinase/C-Jun N-terminal kinase (SAPK/JNK) in transforming growth factor beta-mediated signaling. J. Biol. Chem. 272, 1429–1432.

    Article  PubMed  CAS  Google Scholar 

  13. Wang W. F., Zhou G. S., Hu M. C.-T., Yao Z. B., and Tan T.-H. (1997) Activation of the hematopoietic progenitor kinase-1 (HPK1)-dependent, stress-activated c-Jun N-terminal kinase (JNK) pathway by transforming growth factor β (TGFβ)-activated kinase (TAK1), a kinase mediator of TGFβ signal transduction. J. Biol. Chem. 272, 22,772–22,775.

    Google Scholar 

  14. Hocevar B. A., Brown T. L., and Howe P. H. (1999) TGFβ induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway. EMBO J. 18, 1345–1356.

    Article  PubMed  CAS  Google Scholar 

  15. Mulder K. M., Segarini P. R., Morris S. L., Ziman J. M., and Choi H. G. (1993) Role of receptor complexes in resistance or sensitivity to growth inhibition by TGFβ in intestinal epithelial cell clones. J. Cell. Physiol. 154, 162–174.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Yue, J., Mulder, K.M. (2000). Activation of the Mitogen-Activated Protein Kinase Pathway by TGFβ. In: Howe, P.H. (eds) Transforming Growth Factor-Beta Protocols. Methods in Molecular Biology™, vol 142. Humana Press. https://doi.org/10.1385/1-59259-053-5:125

Download citation

  • DOI: https://doi.org/10.1385/1-59259-053-5:125

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-646-8

  • Online ISBN: 978-1-59259-053-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics