Skip to main content

Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry of Lipopolysaccharides

  • Protocol
Book cover Bacterial Toxins: Methods and Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 145))

Abstract

The outer membrane of Gram-negative bacteria, which include many human pathogens, contains various proteins, polysaccharides, and glycolipids. Of these, lipopolysaccharides (LPS) are of particular microbiological, immuno-logical, and medical importance. As the major amphiphilic components of the outer leaflet of the outer membrane, LPS fulfill a vital role for the organization and function of the outer membrane (e.g., effective permeation barrier to harmful substances). Furthermore, LPS represent the main surface antigen (O-anti-gen) harboring binding sites for antibodies and are thus involved in the specific recognition by the host organism’s defense system. When released from bacteria, for example, during multiplication, death, or lysis, LPS induce in mammalis a broad spectrum of physiological and pathological activities such as stimulation of cytokine production and act as potent bacterial toxins responsible for the toxic manifestation of Gram-negative infections (e.g., septic shock). To emphasize these activities LPS have also been termed endotoxins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zahringer U., Lindner B., and Rietschel E. T. (1994) Molecular structure of lipid A, the endotoxic center of bacterial lipopolysaccharides. Adv. Carbohydr. Chem. Biochem. 50, 211–276.

    Article  PubMed  CAS  Google Scholar 

  2. Holst O. (1999) Chemical structure of the core region of lipopolysaccharides, in Endotoxins in Health and Disease (Brade H., Morrison D. C., Opal S., and Vogel S., eds.), Marcel Dekker New York, pp. 115–154.

    Google Scholar 

  3. Rietschel E. T., Brade H., Holst O., Brade L., Muller-Loennies S., Mamat U., Zahringer U., Beckmann F., Seydel U., Brandenburg K., Ulmer A. J., Mattern T., Heine H., Schletter J., Loppnow H., Schonbeck U., Flad H.-D., Hausschildt S., Schade U. F., Di Padova F., Kusumoto S., and Schumann R. R. (1996) Bacterial endotoxin: chemical constitution, biological recognition, host response, and immunological detoxification, in Pathology of Septic Shock (Rietschel E. T. and Wagner H., eds.), Springer-Verlag Berlin, pp. 39–81.

    Google Scholar 

  4. Rietschel E. T., Kirikae T., Schade F. U., Mamat U., Schmidt G., Loppnow H., Ulmer A., Seydel U., Di Padova F. E., Schreier M., and Brade H. (1994) Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J. 8, 217–225.

    PubMed  CAS  Google Scholar 

  5. Zahringer U., Lindner B., and Rietschel E. T. (1999) Chemical structure of lipid A. Recent methodical advances towards the complete structural analysis of a biologically active molecule, in Endotoxin in Health and Disease (Brade H., Morrison D. C., Opal S., and Vogel S., eds.), Marcel Dekker New York, 93–114.

    Google Scholar 

  6. Karas M. and Hillenkamp F. (1988) Laser desorption ionization of proteins with molecular masses exceeding 10 000 daltons. Anal. Chem. 60, 2299–2301.

    Article  PubMed  CAS  Google Scholar 

  7. Westphal O., Luderitz O., and Bister F. (1952) über die Extraktion von Bakterien mit Phenol/Wasser. Z. Naturforsch. 7, 148–155.

    Google Scholar 

  8. Galanos C., Luderitz O., and Westphal O. (1969) A new method for the extraction of R-lipopolysaccharides. Eur. J. Biochem. 9, 245–249.

    Article  PubMed  CAS  Google Scholar 

  9. Haishima Y., Holst O., and Brade H. (1992) Structural investigation on the lipopolysaccharide of Escherichia coli rough mutant F653 representing the R3 core type. Eur. J. Biochem. 203, 127–134.

    Article  PubMed  CAS  Google Scholar 

  10. Galanos C. and Lüderitz O. (1975) Electrodialysis of lipopolysaccharides and their conversion to uniform salt forms. Eur. J. Biochem. 54, 603–610.

    Article  PubMed  CAS  Google Scholar 

  11. Helander I. M., Lindner B., Brade H., Altman K., Lindberg A. A., and Rietschel E. T. (1988) Chemical structure of the lipopolysaccharide of Haemophilus influenzae strain I69 Rd-/b+: description of a novel deep-rough chemotype. Eur. J. Biochem. 177, 483–492.

    Article  PubMed  CAS  Google Scholar 

  12. Jachymek W., Petersson C., Helander A., Kenne L., Lugowski C., and Niedziela T. (1995) Structural studies of the O-specific chain and a core hexasaccha-ride of Hafnia alvei strain 1192 lipopolysaccharide. Carbohydr. Res 269, 125–138.

    Article  PubMed  CAS  Google Scholar 

  13. Kaltashov I. A., Doroshenko V., Cotter R. J., Takayama K., and Qureshi N. (1997) Confirmation of the structure of lipid A derived from the lipopolysaccharide of Rhodobacter sphaeroides by a combination of MALDI, LSIMS, and tandem mass spectrometry.Anal. Chem. 69, 2317–2322.

    Article  PubMed  CAS  Google Scholar 

  14. Fukuoka S., Knirel Y. A., Lindner B., Moll H., Seydel U., and Zahringer U. (1997) Elucidation of the structure of the core region and the complete structure of the R-type lipopolysaccharide of Erwinia carotovora FERM P-7576. Eur. J. Biochem. 250, 55–62.

    Article  PubMed  CAS  Google Scholar 

  15. White K. A., Kaltashov I. A., Cotter R. J., and Raetz C. R. H. (1997) A mono-functional 3-deoxy-D-manno-octulosonic acid (Kdo) transferase and a Kdo kinase in extracts of Haemophilus influenzae. J. Biol. Chem. 272, 16555–16563.

    Article  PubMed  CAS  Google Scholar 

  16. Qureshi N., Kaltashov I., Walker K., Doroshenko V., Cotter R. J., Takayama K., Sievert T. R., Rice P. A., Lin J. S., and Golenbock D. T. (1997) Structure of the monophosphoryl lipid A moiety obtained from the lipopolysaccharide of Chlamy-dia trachomatis. J. Biol. Chem. 272, 10,594–10,600.

    Article  PubMed  CAS  Google Scholar 

  17. Guo L., Lim K. B., Gunn J. S., Bainbridge B., Darveau R. P., Hackett M., and Miller S. I. (1997) Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP-phoQ. Science 276, 250–253.

    Article  PubMed  CAS  Google Scholar 

  18. Rahman M. M., Guard-Petter J., and Carlson R. W. (1997) A virulent isolate of Salmonella enteritidis produces a Salmonella typhi-like lipopolysaccharide.J. Bacteriol. 179, 2126–2131.

    PubMed  CAS  Google Scholar 

  19. Gibson B. W., Engstrom J. J., John C. M., Hines W., and Falick A. M. (1997) Characterization of bacterial lipooligosaccharides by delayed extraction matrix-assisted laser desorption ionization time-of-flight mass spectrometry. J. Am. Soc. Mass Spectrom. 8, 645–658.

    Article  CAS  Google Scholar 

  20. Juhasz P. and Costello C. E. (1992) Matrix-assisted laser desorption ionization time-of-flight mass spectrometry of underivatized and permethylated ganglio-sides. J. Am. Soc. Mass Spectrom. 3, 785–796.

    Article  CAS  Google Scholar 

  21. Domon B. and Costello C. E. (1988) Oligosaccharide fragmentation nomenclature. Glycoconjugate J. 5, 397–409.

    Article  CAS  Google Scholar 

  22. Fukuoka S., Kanishima H., Nagawa Y., Nahanishi H., Ishihawa K., Niwa Y., Tamiya E., and Karube I. (1992) Structural characterization of the lipid A component of Erwinia carotovora lipopolysaccharide.Arch. Microbiol. 157, 311–318.

    Article  CAS  Google Scholar 

  23. Kaufmann R. (1995) Matrix-assisted laser desorption ionization (MALDI) mass spectrometry: a novel analytical tool in molecular biology and biotechnology. J. Biotechnol. 41, 155–175.

    Article  PubMed  CAS  Google Scholar 

  24. Cotter R. J., Honovich J., Qureshi N., and Takayama K. (1987) Structural determination of lipid A from Gram-negative bacteria using laser desorption mass spectrometry. Biomed. Environm. Mass Spectrom. 14, 591–598.

    Article  CAS  Google Scholar 

  25. Lindner B., Zahringer U., Rietschel E. T., and Seydel U. (1990) Structural elucidation of lipopolysaccharides and their lipid A component: application of soft ionization mass spectrometry, inAnalytical Microbiology Methods: Chromatography and Mass Spectrometry (Fox A., Morgan S. L., Larsson L., and Odham G., eds.), Plenum New York, pp. 149–161.

    Google Scholar 

  26. Suzuki H., Muller O., Guttman A., and Karger B. (1997) Analysis of 1-amino-pyrene-3,6,8-trisulfonate-derivatized oligosaccharides by capillary electrophore-sis with MALDI time-of-flight mass spectrometry. Anal. Chem. 69, 4554–4559.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Lindner, B. (2000). Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry of Lipopolysaccharides. In: Holst, O. (eds) Bacterial Toxins: Methods and Protocols. Methods in Molecular Biology™, vol 145. Humana Press. https://doi.org/10.1385/1-59259-052-7:311

Download citation

  • DOI: https://doi.org/10.1385/1-59259-052-7:311

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-604-8

  • Online ISBN: 978-1-59259-052-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics