Skip to main content

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 145))

Abstract

Approximately 100 yr ago Richard Pfeiffer, a co-worker of Robert Koch in Berlin, discovered that cholera bacteria produced, in addition to heat-labile exotoxin, another toxin (1). In contrast to the secreted exotoxins this new, heat-stable toxin was found to be a constituent of the bacterial cell, and therefore Pfeiffer termed it endotoxin. Today we know that endotoxin (lipopolysaccha-ride, LPS) is the main outer membrane component of Gram-negative bacteria and plays a key role during severe Gram-negative infection, trauma, and shock (2,4). Despite its destructive effects, the presence of low amounts of LPS, which gain access to body fluids and organs by infection and translocation from the gut, are rather beneficial for the host, causing immunostimulation leading to enhanced resistance to infections and malignancy (5). This picture changes completely when larger amounts of LPS are present in the bloodstream, as observed during severe Gram-negative bacterial infections (notably after application of antibiotics) or possibly caused by translocation of entero-bacteria from the gut. Released LPS causes various pathophysiological reactions including fever, leukopenia, tachycardia, tachypnea, hypotension, disseminated intravascular coagulation, and multiorgan failure. This may culminate in septic shock which is associated with a mortality rate of 20–50% and causes approx 100,000 deaths annually only in the United States (6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pfeiffer R. (1892) Untersuchungen über das Choleragift. Z. Hyg. 11, 393–412.

    Google Scholar 

  2. Rietschel E. T. and Brade H. (1992) Bacterial endotoxins. Sci. Am. 267, 54–61.

    PubMed  CAS  Google Scholar 

  3. Rietschel E. T., Kirikae T., Schade F. U., Mamat U., Schmidt G., Loppnow H., Ulmer A. J., Zähringer U., Seydel U and Di Padova F. E. (1994) Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J. 8, 217–225.

    PubMed  CAS  Google Scholar 

  4. Schletter J., Heine H., Ulmer A. J and Rietschel E. T. (1995) Molecular mechanisms of endotoxin activity. Arch. Microbiol. 164, 383–389.

    PubMed  CAS  Google Scholar 

  5. Vogel S. N. and Hogan M. M. (1990) Role of cytokines in endotoxin-mediated host responses, in Immunophysiology: The Role of Cells and Cytokines in Immunity and Inflammation (Oppenheim J. J. and Shevach E. M eds.), Oxford University Press, New York, pp. 238–258.

    Google Scholar 

  6. Nogare D. (1991) Southwestern Internal Medicine Conference: septic shock. Am. J. Med. Sci. 302, 50–65.

    Google Scholar 

  7. Galanos C., Freudenberg M., Katschinski T., Salomao R., Mossmann H and Kumazawa Y. (1992) Tumor necrosis factor and host response to endotoxin, in Bacterial Endotoxic Lipopolysaccharides, Vol. II, Immunpharmacology and Pathophysiology (Morrison D. C. and Ryan J. L., eds.), CRC, Boca Raton, FL, pp. 75–102.

    Google Scholar 

  8. Dinarello C. A. (1984) Interleukin-1. Rev. Infect. Dis. 6, 51–95.

    PubMed  CAS  Google Scholar 

  9. Beutler B. and Cerami A. (1998) The biology of catechin/TNF. A primary mediator of the host response. Annu. Rev. Immunol. 7, 625–655.

    Google Scholar 

  10. Loppnow H. (1994) LPS, recIL1 and smooth muscle cell-Il1 activate vascular cells by specific mechanisms, in Bacterial Endotoxins: Basic Science to Anti-Sepsis Strategies (Levin J., Van Deventer S. J. H., Van der Poll T., and Sturk A., eds.), Wiley-Liss, New York, pp. 309–321.

    Google Scholar 

  11. Haziot A., Tsuberi B. Z., and Goyert S. M. (1993) Neutrophil CD14: biochemical properties and role in the secretion of tumor necrosis factor-alpha in response to lipopolysaccharide. J. Immunol. 150, 5556–5565.

    PubMed  CAS  Google Scholar 

  12. Mattern T., Thanhäuser A., Reiling N., Toellner K. M., Duchrow M., Kusumoto S., Rietschel E. T., Ernst M., Brade H., and Flad H. D. (1994) Endotoxin and lipid A stimulate proliferation of human T cells in the presence of autologous monocytes. J. Immunol. 153, 2996–3004.

    PubMed  CAS  Google Scholar 

  13. Lüderitz O., Freudenberg M., Galanos C., Lehmann V., Rietschel E. T., and Shaw D. (1982) Lipopolysaccharides of gram-negative bacteria, in Current Topics in Membrane and Transport (Razin S. and Rottem S., eds.), Academic Press, New York, pp. 79–151.

    Google Scholar 

  14. Jann K. and Jann B. (1994) Structure and biosynthesis of O-antigens, in Chemistry of Endotoxin (Rietschel E. T., ed.), Elsevier Science Publishers, Amsterdam, pp. 138–186.

    Google Scholar 

  15. Knirel Y. A. (1990) Polysaccharide antigens of Pseudomonas aeruginosa. Crit. Rev. Microbiol. 17, 273–304.

    PubMed  CAS  Google Scholar 

  16. Rietschel E. T., Brade H., Holst O., Brade L., Müller-Loennies S., Mamat U., Zähringer U., Beckmann F., Seydel U., Brandenburg K., Ulmer A. J., Mattern T., Heine H., Schletter J., Loppnow H., Schonbeck U., Flad H.-D., Hauschildt S., Schade U. F., Di Padova F. E., Kusumoto S., and Schumann R. R. (1996) Bacterial endotoxin: Chemical constitution, biological recognition, host response, and immunological detoxification. Curr. Top. Microbiol. Immunol. 216, 39–81.

    PubMed  CAS  Google Scholar 

  17. Rietschel E. T., Brade H., Brade L., Kaca W., Kawahara K., Lindner B., Lüderitz T., Tomita T., Schade U., and Seydel U. (1985) Newer aspects of the chemical structure and biological activity of bacterial endotoxins. Prog. Clin. Biol.Res. 189, 31–51.

    PubMed  CAS  Google Scholar 

  18. Holst O. and Brade H. (1992) Chemical structure of the core region of bacterial lipopolysaccharides, in Bacterial Endotoxic Lipopolysaccharides (Morrison D. C. and Ryan J. L., eds.), CRC, Boca Raton, FL, pp. 135–170.

    Google Scholar 

  19. Unger F. M. (1981) The chemistry and biological significance of 3-deoxy-2-D-manno-2-octulosonic acid (Kdo). Adv. Carbohydr. Chem. Biochem. 38, 323–387.

    CAS  Google Scholar 

  20. Di Padova F. E., Brade H., Barclay G. R., Poxton I. R., Liehl E., Schuetze E., Kocher H. P., Ramsay G., Schreier M. H., and McClelland D. B. (1993) A broadly cross-protective monoclonal antibody binding to Escherichia coli and Salmonella lipopolysaccharides. Infect. Immun. 61, 3863–3872.

    PubMed  Google Scholar 

  21. Di Padova F. E., Gram H., Barclay R., Kleuser B., Liehl E., and Rietschel E. T. (1993) New anticore LPS monoclonal antibodies with clinical potential, in Bacterial Endotoxin: Recognition and Effector Mechanisms (Levin J., Alving C. R., Munford R. S., and Stuetz P. L., eds.), Elsevier, Amsterdam, pp. 325–335.

    Google Scholar 

  22. Zähringer U., Lindner B., and Rietschel E. T. (1994) Molecular structure of lipid A, the endotoxic center of bacterial lipopolysaccharides. Adv. Carbohydr.Chem. Biochem. 50, 211–276.

    PubMed  Google Scholar 

  23. Galanos C., Lüderitz O., Rietschel E. T., Westphal O., Brade H., Brade L., Freudenberg M., Schade U., Imoto M., and Yoshimura H. (1985) Synthetic and natural Escherichia coli free lipid A express identical endotoxic activities. Eur. J. Biochem. 148, 1–5.

    PubMed  CAS  Google Scholar 

  24. Imoto M., Yoshimura H., Shimamoto T., Sakaguchi N., Kusumoto S., and Shiba T. (1987) Total synthesis of Escherichia coli lipid A, the endotoxically active principle of cell-surface lipopolysaccharide. Bull. Chem. Soc. Jpn. 60, 2205–2214.

    CAS  Google Scholar 

  25. Kusumoto S., Yamamoto H., and Shiba T. (1984) Chemical synthesis of lipid X and lipid Y, acylglucosamine-1-phosphates isolated from Escherichia coli mutants. Tetrahedr. Lett. 25, 3727–3730.

    CAS  Google Scholar 

  26. Rietschel E. T., Brade L., Brandenburg K., Flad H.-D., de Jong-Leuveninck J., Kawahara K., Lindner B., Loppnow H., Lüderitz T., and Schade U. (1987) Chemical structure and biologic activity of bacterial and synthetic lipid A. Rev. Infect. Dis. 9(Suppl 5), S527–S536

    PubMed  CAS  Google Scholar 

  27. Rietschel E. T., Brade L., Schade F. U., Seydel U., Zähringer U., Kusumoto S., and Brade H. (1988) Bacterial endotoxins: properties and structure of biologically active domains, in Surface of Microorganisms and Their Interactions with the Mammalian Host (Schrinner E., Richmont M. H., Seibert G., and Schwarz U, eds.), Verlag Chemie, Weinheim, pp. 1–41.

    Google Scholar 

  28. Feist W., Ulmer A. J., Musehold J., Brade H., Kusumoto S., and Flad H.-D. (1989) Induction of tumor necrosis factor-alpha release by lipopolysaccharide and defined lipopolysaccharide partial structures. Immunobiology 179, 293–307.

    PubMed  CAS  Google Scholar 

  29. Wang M. H., Chen Y. Q., Flad H.-D., Baer H. H., Feist W., and Ulmer A. J. (1993) Inhibition of interleukin-6 release and T-cell proliferation by synthetic mirror pseudo cord factor analogues in human peripheral blood mononuclear cells. FEMS Immunol. Med. Microbiol. 6, 53–61.

    PubMed  CAS  Google Scholar 

  30. Rietschel E. T., Kirikae T., Feist W., Loppnow H., Zabel P., Brade L., Ulmer A. J., Brade H., Seydel U., Zähringer U., Schlaak M., Flad H.-D., and Schade F. U. (1991) Molecular aspects of the chemistry and biology of endot-oxin, in Molecular Aspects of Inflammation (42. Colloquium Mosbach, 1991) (Sies H., Flohe L., and Zimmer G., eds.), Springer Verlag Berlin, pp. 207–231.

    Google Scholar 

  31. Loppnow H., Brade L., Brade H., Rietschel E. T., Kusumoto S., Shiba T., and Flad H.-D. (1986) Induction of human interleukin 1 by bacterial and synthetic lipid A. Eur. J. Immunol. 16, 1263–1267.

    PubMed  CAS  Google Scholar 

  32. Wang M. H., Flad H.-D., Feist W., Brade H., Kusumoto S., Rietschel E. T., and Ulmer A. J. (1991) Inhibition of endotoxin-induced interleukin-6 production by synthetic lipid A partial structures in human peripheral blood mono-nuclear cells. Infect. Immun. 59, 4655–4664.

    PubMed  CAS  Google Scholar 

  33. Kovach N. L., Yee E., Munford R. S., Raetz C. R., and Harlan J. M. (1990) Lipid IVA inhibits synthesis and release of tumor necrosis factor induced by lipopolysaccharide in human whole blood ex vivo. J. Exp. Med. 172, 77–84.

    PubMed  CAS  Google Scholar 

  34. Loppnow H., Libby P., Freudenberg M., Krauss J. H., Weckesser J., and Mayer H. (1990) Cytokine induction by lipopolysaccharide (LPS) corresponds to lethal toxicity and is inhibited by nontoxic Rhodobacter capsulatus LPS. Infect. Immun. 58, 3743–3750.

    PubMed  CAS  Google Scholar 

  35. Qureshi N., Takayama K., and Kurtz R. (1991) Diphosphoryl lipid A obtained from the nontoxic lipopolysaccharide of Rhodopseudomonas sphaeroides is an endotoxin antagonist in mice. Infect. Immun. 59, 441–444.

    PubMed  CAS  Google Scholar 

  36. Christ W. J., Asano O., Robidoux A. L., Perez M., Wang Y., Dubuc G. R., Gavin W. E., Hawkins L. D., McGuinness P. D., and Mullarkey M. A. (1995) E5531, a pure endotoxin antagonist of high potency. Science 268, 80–83.

    PubMed  CAS  Google Scholar 

  37. Homma J. Y., Matsuura M., and Kumazawa Y. (1990) Structure-activity relationship of chemically synthesized nonreducing parts of lipid A analogs. Adv. Exp. Med. Biol. 256, 101–119.

    PubMed  CAS  Google Scholar 

  38. Saiki I., Maeda H., Murata J., Takahashi T., Sekiguchi S., Kiso M., Hasegawa A., and Azuma I. (1990) Production of interleukin 1 from human monocytes stimulated by synthetic lipid A subunit analogues. Int. J. Immuno-pharmacol. 12, 297–305.

    CAS  Google Scholar 

  39. Kirikae T., Schade F. U., Zähringer U., Kirikae F., Brade H., Kusumoto S., Kusama T., and Rietschel E. T. (1994) The significance of the hydrophilic backbone and the hydrophobic fatty acid regions of lipid A for macrophage binding and cytokine induction. FEMS Immunol. Med. Microbiol. 8, 13–26.

    PubMed  CAS  Google Scholar 

  40. Galanos C., Lehmann V., Lüderitz O., Rietschel E. T., Westphal O., Brade H., Brade L., Freudenberg M. A., Hansen-Hagge T., and Lüderitz T. (1984) Endotoxic properties of chemically synthesized lipid A part structures. Comparison of synthetic lipid A precursor and synthetic analogues with biosynthetic lipid A precursor and free lipid A. Eur. J. Biochem. 140, 221–227.

    PubMed  CAS  Google Scholar 

  41. Delude R. L., Savedra R. J., Zhao H., Thieringer R., Yamamoto S., Fenton M. J., and Golenbock D. T. (1995) CD14 enhances cellular responses to endotoxin without imparting ligand-specific recognition. Proc. Natl. Acad. Sci. USA 92, 9288–9292.

    PubMed  CAS  Google Scholar 

  42. Seydel U., Labischinski H., Kastowsky M., and Brandenburg K. (1993) Phase behavior, supramolecular structure, and molecular conformation of lipopolysac-charide. Immunobiology 187, 191–211.

    PubMed  CAS  Google Scholar 

  43. Brandenburg K., Mayer H., Koch M. H., Weckesser J., Rietschel E. T., and Seydel U. (1993) Influence of the supramolecular structure of free lipid A on its biological activity. Eur. J. Biochem. 218, 555–563.

    PubMed  CAS  Google Scholar 

  44. Takayama K., Mitchell D. H., Din Z. Z., Mukerjee P., Li C., and Coleman D. L. (1994) Monomeric Re lipopolysaccharide from Escherichia coli is more active than the aggregated form in the Limulus amebocyte lysate assay and in inducing Egr-1 mRNA in murine peritoneal macrophages. J. Biol. Chem. 269, 2241–2244.

    PubMed  CAS  Google Scholar 

  45. Freudenberg M. A., Keppler D., and Galanos C. (1986) Requirement for lipopolysaccharide-responsive macrophages in galactosamine-induced sensiti-zation to endotoxin. Infect. Immun. 51, 891–895.

    PubMed  CAS  Google Scholar 

  46. Munford R. S. and Hall C. L. (1989) Purification of acyloxyacyl hydrolase, a leukocyte enzyme that removes secondary acyl chains from bacterial lipopolysaccharides. J. Biol. Chem. 264, 15,613–15,619.

    PubMed  CAS  Google Scholar 

  47. Luchi M. and Munford R. S. (1993) Binding, internalization, and deacylation of bacterial lipopolysaccharide by human neutrophils. J. Immunol. 151, 959–969.

    PubMed  CAS  Google Scholar 

  48. Larrick J. W., Morgan J. G., Palings I., Hirata M., and Yen M. H. (1991) Complementary DNA sequence of rabbit CAP 18—a unique lipopolysaccharide binding protein. Biochem. Biophys. Res. Commun. 179, 170–175.

    PubMed  CAS  Google Scholar 

  49. Pereira H. A., Erdem I., Pohl J., and Spitznagel J. K. (1993) Synthetic bactericidal peptide based on CAP37: a 37-kDa human neutrophil granule-associated cationic antimicrobial protein chemotactic for monocytes. Proc. Natl. Acad. Sci. USA 90, 4733–4737.

    PubMed  CAS  Google Scholar 

  50. Andersson J., Melchers F., Galanos C., and Lüderitz O. (1973) The mitogenic effect of lipopolysaccharide on bone marrow-derived mouse lymphocytes. Lipid A as the mitogenic part of the molecule. J. Exp. Med. 137, 943–953.

    PubMed  CAS  Google Scholar 

  51. Mattern T., Flad H.-D., Brade L., Rietschel E. T., and Ulmer A. J. (1998) Stimulation of human T lymphocytes by LPS is MHC unrestricted, but strongly dependent on B7 interactions. J. Immunol. 160, 3412–3418.

    PubMed  CAS  Google Scholar 

  52. Milner E. C., Rudbach J. A., and Voneschen K. B. (1983) Cellular responses to bacterial lipopolysaccharide: T cells recognize LPS determinants. Scand. J. Immunol. 18, 21–28.

    PubMed  CAS  Google Scholar 

  53. Vogel S. N., Hilfiker M. L., and Caulfield M. J. (1983) Endotoxin-induced T lymphocyte proliferation. J. Immunol. 130, 1774–1779.

    PubMed  CAS  Google Scholar 

  54. Baker P. J. (1993) Effect of endotoxin on suppressor T cell function. Immuno-biology 187, 372–381.

    CAS  Google Scholar 

  55. Pober J. S. and Cotran R. S. (1990) The role of endothelial cells in inflammation. Transplantation 50, 537–544.

    PubMed  CAS  Google Scholar 

  56. Loppnow H. and Libby P. (1989) Adult human vascular endothelial cells express the IL6 gene differentially in response to LPS or IL1. Cell Immunol. 122, 493–503.

    PubMed  CAS  Google Scholar 

  57. Loppnow H. and Libby P. (1990) Proliferating or interleukin 1-activated human vascular smooth muscle cells secrete copious interleukin 6. J. Clin. Invest. 85, 731–738.

    PubMed  CAS  Google Scholar 

  58. Loppnow H. and Libby P. (1992) Functional significance of human vascular smooth muscle cell-derived interleukin 1 in paracrine and autocrine regulation pathways. Exp. Cell Res. 198, 283–290.

    PubMed  CAS  Google Scholar 

  59. Libby P., Loppnow H., Flee J. C., Palmer H., Li H. M., Warner S. J. C., Salomon R. N., and Clinton S. K. (1991) Production of cytokines by vascular cells—an update and implications for artherogenesis, in Arteriosclerosis—Cellular and Molecular Interactions in the Artery Wall (Gottlieb A. L., Langille B. L., and Federoff S., eds.), Plenum, New York, pp. 161–169.

    Google Scholar 

  60. Mantoviani A. and Bussolino F. (1991) Endothelium-derived modulators of leukocyte function., in VascularEndothelium: Interactions with Circulating Cells. (Gordon J. L., ed.), Elsevier, New York, pp. 129–140.

    Google Scholar 

  61. Haziot A., Ferrero E., Kontgen F., Hijiya N., Yamamoto S., Silver J., Stewart C. L., and Goyert S. M. (1996) Resistance to endotoxin shock and reduced dissemination of gram-negative bacteria in CD14-deficient mice. Immunity 4, 407–414.

    PubMed  CAS  Google Scholar 

  62. Schumann R. R., Leong S. R., Flaggs G. W., Gray P. W., Wright S. D., Mathison J. C., Tobias P. S., and Ulevitch R. J. (1990) Structure and function of lipopolysaccharide binding protein. Science 249, 1429–1431.

    PubMed  CAS  Google Scholar 

  63. Wright S. D., Ramos R. A., Tobias P. S., Ulevitch R. J., and Mathison J. C. (1990) CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein [see comments]. Science 249, 1431–1433.

    PubMed  CAS  Google Scholar 

  64. Gallay P., Heumann D., Le R. D., Barras C., and Glauser M. P. (1994) Mode of action of anti-lipopolysaccharide-binding protein antibodies for prevention of endotoxemic shock in mice. Proc. Natl. Acad. Sci. USA 91, 7922–7926.

    PubMed  CAS  Google Scholar 

  65. Jack R. S., Fan X., Bernheiden M., Rune G., Ehlers M., Weber A., Kirsch G., Mentel R., Furll B., Freudenberg M., Schmitz G., Stelter F., and Schütt C. (1997) Lipopolysaccharide-binding protein is required to combat a murine gram-negative bacterial infection. Nature 389, 742–745.

    PubMed  CAS  Google Scholar 

  66. Lee J. D., Kravchenko V., Kirkland T. N., Han J., Mackman N., Moriarty A., Leturcq D., Tobias P. S., and Ulevitch R. J. (1993) Glycosyl-phospha-tidylinositol-anchored or integral membrane forms of CD14 mediate identical cellular responses to endotoxin. Proc. Natl. Acad. Sci. USA 90, 9930–9934.

    PubMed  CAS  Google Scholar 

  67. Frey E. A., Miller D. S., Jahr T. G., Sundan A., Bazil V., Espevik T., Finlay B. B., and Wright S. D. (1992) Soluble CD14 participates in the response of cells to lipopolysaccharide. J. Exp. Med. 176, 1665–1671.

    PubMed  CAS  Google Scholar 

  68. Bazil V. and Strominger J. L. (1991) Shedding as a mechanism of down-modulation of CD14 on stimulated human monocytes. J. Immunol. 147, 1567–1574.

    PubMed  CAS  Google Scholar 

  69. Bufler P., Stiegler G., Schuchmann M., Hess S., Krüger C., Stelter F., Eckerskorn C., Schütt C. and Engelmann H. (1995) Soluble lipopolysaccharide receptor (CD 14) is released via two different mechanisms from human monocytes and CD14 transfectants. Eur. J. Immunol. 25, 604–610.

    PubMed  CAS  Google Scholar 

  70. Durieux J. J., Vita N., Popescu O., Guette F., Calzada-Wack J., Munker R., Schmidt R. E., Lupker J., Ferrara P., and Ziegler-Heitbrock H. W. (1994) The two soluble forms of the lipopolysaccharide receptor, CD14: characterization and release by normal human monocytes. Eur. J. Immunol. 24, 2006–2012.

    PubMed  CAS  Google Scholar 

  71. Hailman E., Lichenstein H. S., Wurfel M. M., Miller D. S., Johnson D. A., Kelley M., Busse L. A., Zukowski M. M. and Wright S. D. (1994) Lipopolysaccharide (LPS)-binding protein accelerates the binding of LPS to CD 14. J. Exp. Med. 179, 269–277.

    PubMed  CAS  Google Scholar 

  72. Pugin J., Schurer-Maly C. C., Leturcq D., Moriarty A., Ulevitch R. J., and Tobias P. S. (1993) Lipopolysaccharide activation of human endothelial and epithelial cells is mediated by lipopolysaccharide-binding protein and soluble CD14. Proc. Natl. Acad. Sci. USA 90, 2744–2748.

    PubMed  CAS  Google Scholar 

  73. Loppnow H. (1994) LPS, recIL1 and smooth muscle cell-IL1 activate vascular cells by specific mechanisms. Prog. Clin. Biol. Res. 388, 309–321.

    PubMed  CAS  Google Scholar 

  74. Vita N., Lefort S., Sozzani P., Reeb R., Richards S., Borysiewicz L. K., Ferrara P., and Labeta M. O. (1997) Detection and biochemical characteristics of the receptor for complexes of soluble CD 14 and bacterial lipopolysaccharide. J. Immunol. 158, 3457–3462.

    PubMed  CAS  Google Scholar 

  75. Schletter J., Brade H., Brade L., Krüger C., Loppnow H., Kusumoto S., Rietschel E. T., Flad H.-D., and Ulmer A. J. (1995) Binding of lipopolysaccharide (LPS) to an 80-kilodalton membrane protein of human cells is mediated by soluble CD14 and LPS-binding protein. Infect. Immun. 63, 2576–2580.

    PubMed  CAS  Google Scholar 

  76. Wright S. D., Levin S. M., Jong M. T., Chad Z., and Kabbash L. G. (1989) CR3 (CD11b/CD18) expresses one binding site for Arg-Gly-Asp-containing pep-tides and a second site for bacterial lipopolysaccharide. J. Exp. Med. 169, 175–183.

    PubMed  CAS  Google Scholar 

  77. Ingalls R. R. and Golenbock D. T. (1995) CD1 1c/CD18, a transmembrane signaling receptor for lipopolysaccharide. J. Exp. Med. 181, 1473–1479.

    PubMed  CAS  Google Scholar 

  78. Ingalls R. R., Arnaout M. A., Delude R. L., Flaherty S., Savedra R. J., and Golenbock D. T. (1998) The CD11/CD18 integrins: characterization of three novel LPS signaling receptors. Prog. Clin. Biol. Res. 397, 107–117.

    PubMed  CAS  Google Scholar 

  79. Flaherty S. F., Golenbock D. T., Milham F. H., and Ingalls R. R. (1997) CD11/CD18 leukocyte integrins: new signaling receptors for bacterial endot-oxin. J. Surg. Res. 73, 85–89.

    PubMed  CAS  Google Scholar 

  80. Ingalls R. R., Arnaout M. A., and Golenbock D. T. (1997) Outside-in signaling by lipopolysaccharide through a tailless integrin. J. Immunol. 159, 433–438.

    PubMed  CAS  Google Scholar 

  81. Wright S. D. (1991) Multiple receptors for endotoxin. Curr. Opin. Immunol. 3, 83–90.

    PubMed  CAS  Google Scholar 

  82. Hampton R. Y., Golenbock D. T., Penman M., Krieger M., and Raetz C. R. (1991) Recognition and plasma clearance of endotoxin by scavenger receptors. Nature 352, 342–344.

    PubMed  CAS  Google Scholar 

  83. Yang R. B., Mark M. R., Gray A., Huang A., Xie M. H., Zhang M., Goddard A., Wood W. I., Gurney A. L., and Godowski P. J. (1998) Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling [In Process Citation]. Nature 395, 284–288.

    PubMed  CAS  Google Scholar 

  84. Kirschning C. J., Wesche H., Ayers M., and Rothe M. (1998) Human Toll-like receptor 2 confers responsiveness to bacterial LPS. J. Exp. Med. 188, 2091–2097.

    PubMed  CAS  Google Scholar 

  85. Harder T. and Simons K. (1997) Caveolae, DIGs, and the dynamics of sphin-golipid-cholesterol microdomains. Curr. Opin. Cell Biol. 9, 534–542.

    PubMed  CAS  Google Scholar 

  86. Brown D. A. and Rose J. K. (1992) Sorting of GPI-anchored proteins to gly-colipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68, 533–544.

    PubMed  CAS  Google Scholar 

  87. Cinek T. and Horejsi V. (1992) The nature of large noncovalent complexes containing glycosyl-phosphatidylinositol-anchored membrane glycoproteins and protein tyrosine kinases. J. Immunol. 149, 2262–2270.

    PubMed  CAS  Google Scholar 

  88. Stefanova I., Corcoran M. L., Horak E. M., Wahl L. M., Bolen J. B., and Horak I. D. (1993) Lipopolysaccharide induces activation of CD14-associated protein tyrosine kinase p53/56lyn. J. Biol. Chem. 268, 20,725–20,728.

    PubMed  CAS  Google Scholar 

  89. Wang P. Y., Kitchens R. L., and Munford R. S. (1995) Bacterial lipopolysaccharide binds to CD14 in low-density domains of the monocyte-macrophage plasma membrane. J. Inflamm. 47, 126–137.

    PubMed  CAS  Google Scholar 

  90. Pugin J., Kravchenko V. V., Lee J. D., Kline L., Ulevitch R. J., and Tobias P. S. (1998) Cell activation mediated by glycosylphosphatidylinositol-anchored or transmembrane forms of CD14. Infect. Immun. 66, 1174–1180.

    PubMed  CAS  Google Scholar 

  91. Shenoy-Scaria A. M., Kwong J., Fujita T., Olszowy M. W., Shaw A. S., and Lublin D. M. (1992) Signal transduction through decay-accelerating factor. Interaction of glycosyl-phosphatidylinositol anchor and protein tyrosine kinases p56lck and p59fyn 1. J. Immunol. 149, 3535–3541.

    PubMed  CAS  Google Scholar 

  92. Davis L. S., Patel S. S., Atkinson J. P., and Lipsky P. E. (1988) Decay-accelerating factor functions as a signal transducing molecule for human T cells. J. Immunol. 141, 2246–2252.

    PubMed  CAS  Google Scholar 

  93. Shibuya K., Abe T., and Fujita T. (1992) Decay-accelerating factor functions as a signal transducing molecule for human monocytes. J. Immunol. 149, 1758–1762.

    PubMed  CAS  Google Scholar 

  94. Stefanova I., Horejsi V., Ansotegui I. J., Knapp W., and Stockinger H. (1991) GPI-anchored cell-surface molecules complexed to protein tyrosine kinases. Science 254, 1016–1019.

    PubMed  CAS  Google Scholar 

  95. Beaty C. D., Franklin T. L., Uehara Y., and Wilson C. B. (1994) Lipopolysac-charide-induced cytokine production in human monocytes: role of tyrosine phos-phorylation in transmembrane signal transduction. Eur. J. Immunol. 24, 1278–1284.

    PubMed  CAS  Google Scholar 

  96. Meng F. and Lowell C. A. (1997) Lipopolysaccharide (LPS)-induced macroph-age activation and signal transduction in the absence of Src-family kinases Hck, Fgr, and Lyn. J. Exp. Med. 185, 1661–1670.

    PubMed  CAS  Google Scholar 

  97. Geng Y., Zhang B., and Lotz M. (1993) Protein tyrosine kinase activation is required for lipopolysaccharide induction of cytokines in human blood monocytes. J. Immunol. 151, 6692–6700.

    PubMed  CAS  Google Scholar 

  98. Jakway J. P. and DeFranco A. L. (1986) Pertussis toxin inhibition of B cell and macrophage responses to bacterial lipopolysaccharide. Science 234, 743–746.

    PubMed  CAS  Google Scholar 

  99. Daniel-Issakani S., Spiegel A. M., and Strulovici B. (1989) Lipopolysaccharide response is linked to the GTP binding protein, Gi2, in the promonocytic cell line U937. J. Biol. Chem. 264, 20,240–20,247.

    PubMed  CAS  Google Scholar 

  100. Barber S. A., Detore G., McNally R., and Vogel S. N. (1996) Stimulation of the ceramide pathway partially mimics lipopolysaccharide-induced responses in murine peritoneal macrophages. Infect. Immun. 64, 3397–3400.

    PubMed  CAS  Google Scholar 

  101. Barber S. A., Perera P. Y., and Vogel S. N. (1995) Defective ceramide response in C3H/HeJ (Lpsd) macrophages. J. Immunol. 155, 2303–2305.

    PubMed  CAS  Google Scholar 

  102. Joseph C. K., Wright S. D., Bornmann W. G., Randolph J. T., Kumar E. R. Bittman R., Liu J., and Kolesnick R. N. (1994) Bacterial lipopolysaccharide has structural similarity to ceramide and stimulates ceramide-activated protein kinase in myeloid cells. J. Biol. Chem. 269, 17,606–17,610.

    PubMed  CAS  Google Scholar 

  103. Weinstein S. L., Gold M. R., and DeFranco A. L. (1991) Bacterial lipopolysaccharide stimulates protein tyrosine phosphorylation in macrophages. Proc. Natl. Acad. Sci. USA 88, 4148–4152.

    PubMed  CAS  Google Scholar 

  104. Weinstein S. L., Sanghera J. S., Lemke K., DeFranco A. L., and Pelech S. L. (1992) Bacterial lipopolysaccharide induces tyrosine phosphorylation and activation of mitogen-activated protein kinases in macrophages. J. Biol. Chem. 267, 14,955–14,962.

    PubMed  CAS  Google Scholar 

  105. Hambleton J., Weinstein S. L., Lem L., and De Franco A. L. (1996) Activation of c-Jun N-terminal kinase in bacterial lipopolysaccharide-stimulated macrophages. Proc. Natl. Acad. Sci. USA 93, 2774–2778.

    PubMed  CAS  Google Scholar 

  106. Sanghera J. S., Weinstein S. L., Aluwalia M., Girn J., and Pelech S. L. (1996) Activation of multiple proline-directed kinases by bacterial lipopolysaccharide in murine macrophages. J. Immunol. 156, 4457–4465.

    PubMed  CAS  Google Scholar 

  107. Han J., Lee J. D., Tobias P. S., and Ulevitch R. J. (1993) Endotoxin induces rapid protein tyrosine phosphorylation in 70Z/3 cells expressing CD 14. J. Biol. Chem. 268, 25,009–25,014.

    PubMed  CAS  Google Scholar 

  108. Han J., Lee J. D., Bibbs L., and Ulevitch R. J. (1994) A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265, 808–811.

    PubMed  CAS  Google Scholar 

  109. Geppert T. D., Whitehurst C. E., Thompson P., and Beutler B. (1994) Lipopolysaccharide signals activation of tumor necrosis factor biosynthesis through the ras/raf-1/MEK/MAPK pathway. Mol. Med. 1, 93–103.

    PubMed  CAS  Google Scholar 

  110. Reimann T., Buscher D., Hipskind R. A., Krautwald S., Lohmann-Matthes M. L., and Baccarini M. (1994) Lipopolysaccharide induces activation of the Raf-1 /MAP kinase pathway. A putative role for Raf-1 in the induction of the IL-1 beta and the TNF-alpha genes. J. Immunol. 153, 5740–5749.

    PubMed  CAS  Google Scholar 

  111. Lee J. C., Laydon J. T., McDonnell P. C., Gallagher T. F., Kumar S., Green D., McNulty D., Blumenthal M. J., Heys J. R., and Landvatter S. W. (1994) A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372, 739–746.

    PubMed  CAS  Google Scholar 

  112. Han J., Jiang Y., Li Z., Kravchenko V. V., and Ulevitch R. J. (1997) Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature 386, 296–299.

    PubMed  CAS  Google Scholar 

  113. Perregaux D. G., Dean D., Cronan M., Connelly P., and Gabel C. A. (1995) Inhibition of interleukin-1 beta production by SKF86002: evidence of two sites of in vitro activity and of a time and system dependence. Mol. Pharmacol. 48, 433–442.

    PubMed  CAS  Google Scholar 

  114. Coffey R. G., Weakland L. L., and Alberts V. A. (1992) Paradoxical stimulation and inhibition by protein kinase C modulating agents of lipopolysaccharide evoked production of tumour necrosis factor in human monocytes. Immunology 76, 48–54.

    PubMed  CAS  Google Scholar 

  115. Shapira L., Takashiba S., Champagne C., Amar S., and Van D. T. (1994) Involvement of protein kinase C and protein tyrosine kinase in lipopolysaccharide-induced TNF-alpha and IL-1 beta production by human monocytes. J. Immunol. 153, 1818–1824.

    PubMed  CAS  Google Scholar 

  116. Herrera-Velit P., Knutson, K. L. and Reiner, N. E. (1997) Phosphatidylinositol 3-kinase-dependent activation of protein kinase C-zeta in bacterial lipopolysac-charide-treated human monocytes. J. Biol. Chem. 272, 16,445–16,452.

    PubMed  CAS  Google Scholar 

  117. Shapira L., Sylvia V. L., Halabi A., Soskolne W. A., Van D. T., Dean D. D., Boyan B. D., and Schwartz Z. (1997) Bacterial lipopolysaccharide induces early and late activation of protein kinase C in inflammatory macrophages by selective activation of PKC-epsilon. Biochem. Biophys. Res. Commun. 240, 629–634.

    PubMed  CAS  Google Scholar 

  118. Herrera-Velit P. and Reiner N. E. (1996) Bacterial lipopolysaccharide induces the association and coordinate activation of p53/56lyn and phosphatidylinositol 3-kinase in human monocytes. J. Immunol. 156, 1157–1165.

    PubMed  CAS  Google Scholar 

  119. Park Y. C., Lee C. H., Kang H. S., Chung H. T., and Kim H. D. (1997) Wortmannin, a specific inhibitor of phosphatidylinositol-3-kinase, enhances LPS-induced NO production from murine peritoneal macrophages. Biochem. Biophys. Res. Commun. 240, 692–696.

    PubMed  CAS  Google Scholar 

  120. Baeuerle P. A. and Baltimore D. (1996) NF-kappa B: ten years after. Cell 87, 13–20.

    PubMed  CAS  Google Scholar 

  121. Maniatis T. (1997) Catalysis by a multiprotein IkappaB kinase complex. Science 278, 818–819.

    PubMed  CAS  Google Scholar 

  122. Lee F. S., Hagler J., Chen Z. J., and Maniatis T. (1997) Activation of the IkappaB alpha kinase complex by MEKK1, a kinase of the JNK pathway. Cell 88, 213–222.

    PubMed  CAS  Google Scholar 

  123. Regnier C. H., Song H. Y., Gao X., Goeddel D. V., Cao Z., and Rothe M. (1997) Identification and characterization of an IkappaB kinase. Cell 90, 373–383.

    PubMed  CAS  Google Scholar 

  124. Malinin N. L., Boldin M. P., Kovalenko A. V., and Wallach D. (1997) MAP3K-related kinase involved in NF-kappaB induction by TNF, CD95 and IL-1. Nature 385, 540–544.

    PubMed  CAS  Google Scholar 

  125. Mattern T., Girroleit G., Flad H.-D., Rietschel E. M., and Ulmer A. J. (1999) CD34-positive haematopoietic stem cells exert accessory function in LPS-induced T-cell proliferation and CD80 expression on monocytes. J. Exp. Med. 189, 693–700.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

El-Samalouti, V.T., Hamann, L., Dieter Flad, H., Ulmer, A.J. (2000). The Biology of Endotoxin. In: Holst, O. (eds) Bacterial Toxins: Methods and Protocols. Methods in Molecular Biology™, vol 145. Humana Press. https://doi.org/10.1385/1-59259-052-7:287

Download citation

  • DOI: https://doi.org/10.1385/1-59259-052-7:287

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-604-8

  • Online ISBN: 978-1-59259-052-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics