Skip to main content

Phage Libraries for Generation of Anti-Botulinum scFv Antibodies

  • Protocol
Bacterial Toxins: Methods and Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 145))

  • 1458 Accesses

Abstract

The biotechnological generation of high affinity monoclonal antibodies (MAbs) has traditionally involved the production of hybridomas from spleen cells of immunized animals (1). This event, together with availability of increasingly sophisticated molecular biology and protein engineering techniques, opened up the field of numerous applications and benefits in not only the medical but also industrial world. Now the use of phage antibodies offers a new route for the generation of antibodies, including antibodies of human origin, which cannot be easily obtained by conventional hybridoma technology. Recent advances in the expression of antibody fragments in E. coli (2,3) and the application of the polymerase chain reaction (4) for cloning of immunoglobulin DNA (5,6) have mainly contributed to these achievements. With phage display, antibodies can be made completely in vitro, bypassing the immune system and the immunization procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Köhler G. and Milstein C. (1975) Continous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497.

    Article  PubMed  Google Scholar 

  2. Better M., Chang C. P., Robinson R. R., and Horwitz A. H. (1988) Escherichia coli secretion of an active chimeric antibody fragment. Science 240, 1041–1043.

    Article  PubMed  CAS  Google Scholar 

  3. Skerra A. and Pluckthun A. (1988) Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 240, 1038–1041.

    CAS  Google Scholar 

  4. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., and Erlich H. A. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491.

    Article  PubMed  CAS  Google Scholar 

  5. Orlandi R., Gussow D. H., Jones P. T., and Winter G. (1989) Cloning immunoglobulin variable domains for expression by the polymerase chain reaction. Proc. Natl. Acad. Sci. USA 86, 3833–3837.

    Article  PubMed  CAS  Google Scholar 

  6. Marks J. D., Tristrem M., Karpas A., and Winter G. (1991) Oligonucleotide primers for polymerase chain reaction amplification of human immunoglobulin variable genes and design of family-specific oligonucleotide probes. Eur. J. Immunol. 21, 985–991.

    Article  PubMed  CAS  Google Scholar 

  7. Kang A., Barbas C., Janda K., and Benkovic S. (1991) Linkage of recognition and replication functions by assembling combinatorial Fab libraries along phage surfaces. Proc. Natl. Acad. Sci. USA 88, 4363–4366.

    Article  PubMed  CAS  Google Scholar 

  8. Huse W., Stinchcombe T., Glaser S., Starr L. M., Hellstrom K., Hellstrom I., and Yelton D. (1992) Application of a filamentous phage pVIII fusion protein system suitable for efficient production, screening, and mutagenesis of F(ab) antibody fragments. J. Immunol. 149, 3914–3920.

    PubMed  CAS  Google Scholar 

  9. McCafferty J., Griffiths A. D., Winter G., and Chiswell D. J. (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552–554.

    Article  PubMed  CAS  Google Scholar 

  10. Hoogenboom H. R., Griffiths A. D., Johnson K. S., Chiswell D. J., Hudson P., and Winter G. (1991) Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res. 19, 4133–4137.

    Article  PubMed  CAS  Google Scholar 

  11. Engelhardt O., Grabher R., Himmler G., and Ruker F. (1994) Two-step cloning of antibody variable domains in a phage display vector. Bio/Techniques 17, 44–46.

    CAS  Google Scholar 

  12. Dubel S., Breitling F., Fuchs P., Braunagel M., Klewinghaus I., and Little M. (1993) A family of vectors for surface display and production of antibodies. Gene 128, 97–101.

    Article  PubMed  CAS  Google Scholar 

  13. Barbas C. F., Kang A. S., Lerner R. A., and Benkovic S. J. (1991) Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc. Natl. Acad. Sci. USA 88, 7978–7982.

    Article  PubMed  CAS  Google Scholar 

  14. Marks J. D., Hoogenboom H. R., Bonnert T. P., McCafferty J., Griffiths A. D., and Winter G. (1991) By-passing immunization: human antibodies from V-genelibraries displayed on phage. J. Mol. Biol. 222, 581–597.

    Article  PubMed  CAS  Google Scholar 

  15. Griffiths A. D., Williams S. C., Hartley O., Tomlinson I. M., Waterhouse P., Crosby W. L., Kontermann R. E., Jones P. T., Low N. M., Allison T. J., Prospero T. D., Hoogenboom H. R., Nissim A., Cox J. P. L., Harrison J. L., Zaccolo M., Gherardi E., and Winter G. (1994) Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J. 13, 3245–3260.

    PubMed  CAS  Google Scholar 

  16. Vaughan T. J., Williams A. J., Pritchard K., Osbourn J. K., Pope A. R., Earnshaw J. C., McCafferty J., Hodits R. A., Wilton J., and Johnson K. S. (1996) Human antibodies with sub-nanomolar affinities isolated from a large nonimmunized phage display library. Nature Biotech. 14, 309–314.

    Article  CAS  Google Scholar 

  17. Sheets M. D., Amersdorfer P., Finnern R., Sargent P., Lindqvist E., Schier R., Hemingsen G., Wong C., Gerhart J. C., and Marks J. D. (1998) Efficient construction of a large non-immune phage antibody library: the production of high affinity human single-chain antibodies to protein antigens. Proc. Natl. Acad. Sci. USA 95, 6157–6162.

    Article  PubMed  CAS  Google Scholar 

  18. Chen F., Kuziemko G. M., Amersdorfer P., Wong C., Marks J. D., and Stevens R. C. (1997) Antibody mapping to domains of botulinum neurotoxin serotype A in the complexed and uncomplexed forms. Infect. Immun. 65, 1626–1630.

    PubMed  CAS  Google Scholar 

  19. Griffiths A. D., Malmqvist M., Marks J. D., Bye J. M., Embleton M. J., McCafferty J., Baier M., Holliger K. P., Gorick B. D., Hughes-Jones N. C., Hoogenboom H. R., and Winter G. (1993) Human anti-self antibodies with high specificity from phage display libraries. EMBO J. 12, 725–734.

    PubMed  CAS  Google Scholar 

  20. Perelson A. S. and Oster G. F. (1979) Theoretical studies of clonal selection: minimal antibody repertoire size and reliability of self non-self discrimination. J. Theor. Biol. 81, 645–670.

    Article  PubMed  CAS  Google Scholar 

  21. Perelson A. S. (1989) Immune network theory. Immunol. Rev. 110, 5–36.

    Article  PubMed  CAS  Google Scholar 

  22. Schibler U., Marcu K. B., and Perry R. P. (1978) The synthesis and processing of the messenger RNAs specific heavy and light chain immunoglobulins in MPC-11 cells. Cell 15, 1495–1509.

    Article  PubMed  CAS  Google Scholar 

  23. Amersdorfer P., Wong C., Chen S., Smith T., Desphande S., Sheridan R., Finnern R., and Marks J. D. (1997) Molecular characterization of murine humoral immune response to botulinum neurotoxin type A binding domain as assessed by using phage antibody libraries. Infect. Immun. 65, 3743–3752.

    PubMed  CAS  Google Scholar 

  24. Barbas C. F., Collet T. A., Amberg W., Roben P., Binley J. M., Hoekstra D., Cababa D., Jones T. M., Williamson A., Pilkington G. R., Haigwood N. L., Cabezas E., Satterthwait A. C., Sanz I., and Burton D. R. (1993) Molecular profile of an antibody response to HIV-1 as probed by combinatorial libraries. J. Mol. Biol. 230, 812–823.

    Article  PubMed  CAS  Google Scholar 

  25. Binley J. M., Ditzel H. J., Barbas III C. F., Sullivan N., Sodroski J., Parren P. W. H. I., and Burton D. R. (1996) Human antibody responses to HIV type 1 glycoprotein 41 cloned in phage display libraries suggest three major epitopes are recognized and give evidence for conserved antibody motifs in antigen binding. AIDS Res. Hum. Retroviruses 12, 911–924.

    Article  PubMed  CAS  Google Scholar 

  26. Zebedee S. L., Barbas C. F., Hom Y.-L., Cathoien R. H., Graff R., DeGraw J., Pyatt J., LaPolla R., Burton D. R., and Lerner R. A. (1992) Human combinatorial antibody libraries to hepatitis B surface antigens. Proc. Natl. Acad. Sci. USA 89, 3175–3179.

    Article  PubMed  CAS  Google Scholar 

  27. Chan S., Bye J., Jackson P., and Allain J. (1996) Human recombinant antibodies specific for hepatitis C virus core and envelope E2 peptides from an immune phage display library. J. Gen. Virol. 10, 2531–2539.

    Article  Google Scholar 

  28. Crowe J., Murphy B., Chanock R., Williamso R., Barbas C., and Burton D. (1994) Recombinant human respiratory syncytial virus (RSV) monoclonal antibody Fab is effective therapeutically when introduced directly into the lungs of RSV-infected mice. Proc. Natl. Acad. Sci. USA 91, 1386–1390.

    Article  PubMed  CAS  Google Scholar 

  29. Barbas C., Crowe J., Cababa D., Jones T., Zebedee S., Murphy B., Chanock R., and Burton D. (1992) Human monoclonal Fab fragments derived from a combinatorial library bind to respiratory syncytial virus F glycoprotein and neutralize infectivity. Proc. Natl. Acad. Sci. USA 89, 10,164–10,168.

    Article  PubMed  CAS  Google Scholar 

  30. Reason D., Wagner T., and Lucas A. (1997) Human Fab fragments specific for the Haemophilus influenzae b polysaccharide isolated from a bacteriophage combinatorial library use variable region gene combinations and express an idiotype that mirrors in vivo expression. Infect. Immun. 65, 261–266.

    PubMed  CAS  Google Scholar 

  31. Chomczynski P. and Sacchi N. (1987) Single-step method of RNA isolation by acid guanidinium-thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159.

    Article  PubMed  CAS  Google Scholar 

  32. Huston J. S., Levinson D., Mudgett H. M., Tai M. S., Novotny J., Margolies M. N., Ridge R. J., Bruccoleri R. E., Haber E., Crea R., and Oppermann H. (1988) Protein engineering of antibody binding sites: recovery of specific activity in an antidigoxin single-chain Fv analogue produced in Escherichia coli. Proc. Natl. Acad. Sci. USA 85, 5879–5883.

    Article  PubMed  CAS  Google Scholar 

  33. De Bellis D. and Schwartz I. (1990) Regulated expression of foreign genes fused to lac: control by glucose levels in growth medium. Nucleic Acids Res. 18, 1311.

    Article  PubMed  Google Scholar 

  34. Poul M. A. and Marks J. D. (1997) Intracellular Antibodies, in Intrabodies—Basic Research in Clinical Gene Therapy Applications (Marasco W. A., ed.), Landes Bioscience, Georgetown, TX, pp. 30,31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Amersdorfer, P., Marks, J.D. (2000). Phage Libraries for Generation of Anti-Botulinum scFv Antibodies. In: Holst, O. (eds) Bacterial Toxins: Methods and Protocols. Methods in Molecular Biology™, vol 145. Humana Press. https://doi.org/10.1385/1-59259-052-7:219

Download citation

  • DOI: https://doi.org/10.1385/1-59259-052-7:219

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-604-8

  • Online ISBN: 978-1-59259-052-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics