Genetic Construction, Expression, and Characterization of Diphtheria Toxin-Based Growth Factor Fusion Proteins

  • Johanna C. vanderSpek
  • John R. Murphy
Part of the Methods in Molecular Biology™ book series (MIMB, volume 145)


The fusion protein toxins that have been described are generally composed of the catalytic and transmembrane domains of a bacterial toxin (e.g., diphtheria toxin [DT] or Pseudomonas exotoxin A) to which a polypeptide hormone, growth factor, or single-chain antibody (scFv) is genetically fused (1, 2, 3). In these constructs, the native receptor binding domain of the toxin is genetically replaced with the targeting ligand. Our laboratory has focused almost exclusively on the construction, expression, and characterization of DT-based fusion toxins (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12). We have used these novel cytotoxic reagents as probes to study structure-function relationships of the DT catalytic and transmembrane domains, as well as to study the receptor binding components of the fusion proteins (13, 14, 15, 16, 17, 18, 19). We are currently using these novel reagents to study the underlying mechanisms involved with delivery of the fusion protein toxin’s catalytic domain across the membrane and into the cytosol of target eucaryotic cells. The catalytic domain of diphtheria toxin catalyzes the NAD+-dependent ADP-ribosylation of the diphthamide residue in elongation factor 2, resulting in inhibition of protein synthesis (20,21). As the delivery of a single molecule of the catalytic domain to the eucaryotic cell cytosol has been shown to result in the death of that cell, the fusion protein toxins represent a family of highly potent, receptor-specific, cytotoxic probes (22).


Diphtheria Toxin Bacterial Pellet Receptor Binding Domain Refold Buffer Fusion Toxin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Brinkman U., Reiter Y., Jung S-H., Lee B., and Pastan I. (1993) A recombinant imM unotoxin containing a disulfide-stabilized Fv fragment (dsFv). Proc. Natl. Acad. Sci. USA 90, 7538–7542.CrossRefGoogle Scholar
  2. 2.
    Murphy J. R. and vanderSpek J. C. (1995) Targeting diphtheria toxin to growth factor receptors. Semin. Cancer Biol. 6, 259–267.PubMedCrossRefGoogle Scholar
  3. 3.
    Kreitman R. J. and Pastan I. (1995) Targeting Pseudomonas exotoxin to hematologic malignancies. Semin. Cancer Biol. 6, 297–306.PubMedCrossRefGoogle Scholar
  4. 4.
    Murphy J. R., Bishai W., Borowski M., Miyanohara A., Boyd J., and Nagle S. (1986) Genetic construction, expression and melanoma-selective cytotoxicity of a diphtheria toxin-α-melanocyte stimulating hormone fusion protein. Proc. Natl. Acad. Sci. USA 83, 8258–8262.PubMedCrossRefGoogle Scholar
  5. 5.
    Williams D., Parker K., Bishai W., Borowski M., Genbauffe F., Strom T. B., and Murphy J. R. (1987) Diphtheria-toxin receptor binding domain substitution with interleukin-2: genetic construction and properties of a diphtheria toxin-related interleukin-2 fusion protein. Protein Engng. 1, 493–498.CrossRefGoogle Scholar
  6. 6.
    Lakkis F., Steele A., Pacheco-Silva A., Kelley V. E., Strom T.B., and Murphy. J. R. (199l) Interleukin-4 receptor targeted cytotoxicity: genetic construction and properties of diphtheria toxin-related interleukin l fusion toxins. Eur. J. Im M unol. 21, 2253–2258.Google Scholar
  7. 7.
    Aullo P., Alcani J., Popoff M. R., Klatzman D. R. Murphy J. R., and Boquet P. (1992) In vitro effects of a recombinant diphtheria-human CD4 fusion toxin on acute and chronically HIV-1 infected cells. EMBO J. 12, 921–931.Google Scholar
  8. 8.
    Jean L.-F. and Murphy J. R. (1992) Diphtheria toxin receptor binding domain substitution with interleukin-6: genetic construction and interleukin-6 receptor specific action of a diphtheria toxin-related interleukin-6 fusion protein. Protein Engng. 4, 989–994.CrossRefGoogle Scholar
  9. 9.
    vander Spek J. C, Sutherland J., Sampson E., and Murphy J. R. (1995) Genetic construction and characterization of the diphtheria toxin-related interleukin 15 fusion protein DAB389 sIL-15. Protein Engng. 8, 1317–1321.CrossRefGoogle Scholar
  10. 10.
    Fisher C. E., Sutherland J. A., Krause J. E., Murphy J. R., Leeman S. E., and vanderSpek J. C. (1996) Genetic construction and properties of a diphtheria toxin-related substance P fusion protein: in vitro destruction of cells bearing substance P receptors. Proc. Natl. Acad. Sci. USA 93, 7341–7345.PubMedCrossRefGoogle Scholar
  11. 11.
    vanderSpek J. C, Sutherland J. A., Zeng H., Battey J. F., Jensen R. T., and Murphy J. R. (1997) Inhibition of protein synthesis in small cell lung cancer cells induced by the diptheria toxin-related fusion protein DAB389 GRP. Cancer Res. 57, 290–294.PubMedGoogle Scholar
  12. 12.
    Sweeney E. B., Foss F. M., Murphy J. R., and vanderSpek J. C. (1998) Interleukin 7 (IL-7) receptor-specific cell killing by DAB389 IL-7: a novel agent for the elimination of IL-7 receptor positive cells. Bioconj. Chem. 9, 201–207.CrossRefGoogle Scholar
  13. 13.
    Williams D., Snider C. E., Strom T. B., and Murphy J. R. (1990) Structure function analysis of IL-2 toxin (DAB486 IL-2): fragment B sequences required for the delivery of fragment A to the cytosol of target cells. J. Biol. Chem. 265. 11,885–11,889.PubMedGoogle Scholar
  14. 14.
    Williams D. P., Wen Z., Watson R. S., Boyd J., Strom T. B., and Murphy J. R. (1990) Cellular processing of the interleukin-2 fusion toxin DAB486-IL-2 and efficient delivery of diphtheria fragment A to the cytosol of target cells requires Arg194. J. Biol. Chem. 265, 20673–20677.PubMedGoogle Scholar
  15. 15.
    vanderSpek J. C, Mindell J. A., Finkelstein A., and Murphy J. R. (1993) Structure/function analysis of the transmembrane domain DAB389-IL-2, an interleukin-2 receptor-targeted fusion toxin. J. Biol. Chem. 268, 12077–12082.PubMedGoogle Scholar
  16. 16.
    vanderSpek J. C, Howland K., Friedman T., and Murphy J. R. (1994) Maintenance of the hydrophobic face of the diphtheria toxin amphipathic transmembrane helix 1 is essential for the efficient delivery of the catalytic domain to the cytosol of target cells. Protein Engng. 7, 985–989.CrossRefGoogle Scholar
  17. 17.
    vanderSpek J. C, Cassidy D., Genbauffe F., Huynh P. D., and Murphy J. R.(1994) An intact transmembrane helix 9 is essential for the efficient delivery of the diphtheria toxin catalytic domain to the cytosol of target cells. J. Biol. Chem. 269, 21,455–21,459.PubMedGoogle Scholar
  18. 18.
    vanderSpek J. C, Sutherland J. A., Ratnarathorn M., Howland K., Ciardelli T. L., and Murphy J. R. (1996) DAB389 IL-2 receptor binding domain mutations: cytotoxic probes for studies of ligand/receptor interactions. J. Biol. Chem. 271. 2145–12149.Google Scholar
  19. 19.
    Hu H.-Y., Huynh P. D., Murphy J.R., and vanderSpek J. C. (1998) The effects of helix breaking mutations in the diphtheria toxin transmembrane domain helix layers of the fusion toxin DAB389 IL-2. Protein Engng. 11, 101–107.CrossRefGoogle Scholar
  20. 20.
    Robinson E. A., Henriksen O., and Maxwell E. S. (1974) Elongation factor 2; amino acid sequence at the site of adenosine diphosphate ribosylation. J. Biol.Chem. 249, 5088–5093.PubMedGoogle Scholar
  21. 21.
    Van Ness B. G., Howard J. B., and Bodley J. W. (1980) ADP-ribosylation of elongation factor 2 by diphtheria toxin: isolation and properties of the novel ribosyl-amino acid and its hydrolysis products. J. Biol. Chem. 255, 10,717–10,720.PubMedGoogle Scholar
  22. 22.
    Yamaizumi K., Mekada E., Uchida T., and Okada Y. (1978) One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Cell 15, 245–250.PubMedCrossRefGoogle Scholar
  23. 23.
    Studier F. W. and Moffatt B. A. (1986) Use of bacteriophage T7 RNA poly-merase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189, 113–130.PubMedCrossRefGoogle Scholar
  24. 24.
    Rosenberg A. H., Lade B. N., Chui D., Lin S., Dunn J. J., and Studier F. W. (1987) Vectors for selective expression of cloned DNAs by T7 RNA polymerase. Gene 56, 125–135.PubMedCrossRefGoogle Scholar
  25. 25.
    Studier F. W., Rosenberg A. H., Dunn J. J., and Dubendorff J. W. (1990) Useof T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185, 60–89.PubMedCrossRefGoogle Scholar
  26. 26.
    Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., and Struhl K. (1988) Current Protocob in Molecular Biology, John Wiley & Sons, New York.Google Scholar
  27. 27.
    Sanger F., Nicklen S., and Coulsen A. R. (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463–5467.PubMedCrossRefGoogle Scholar
  28. 28.
    Kraft R., Tardiff J., Krauter K. S., and Leinwand L. A. (1988) Using mini-prep plasmid DNA for sequencing double stranded template with sequenase. BioTechniques 6, 544–547.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • Johanna C. vanderSpek
    • 1
  • John R. Murphy
    • 1
  1. 1.Department of MedicineBoston University School of MedicineBoston

Personalised recommendations