Use of Green Fluorescent Protein (GFP) to Study Cellular Dynamics

Constructing GFP-Tagged Motor Enzymes
  • Hong Cao
  • Heather Thompson
  • Eugene W. Krueger
  • Mark McNiven
Part of the Methods in Molecular Biology™ book series (MIMB, volume 161)


The green fluorescent protein (GFP) from the Pacific Northwest jellyfish Aequorea victoria is a member of a small but important class of proteins that exhibit strong visible fluorescence without the requirement of cofactors or other enzymes. In vivo, the photoprotein aequorin binds dimers of GFP allowing the blue light emitted by aequorin to be converted to green light (1). This visible fluorescence emitted by GFP is made possible by an internal p-hydroxybenzylideneimidazolinone chromophore formed post-translationally by cyclization of Ser65, Tyr66, and Gly67 and 1,2-dehydrogenation of the tyrosine. A number of mutations have been made in GFP, most of which result in a partial or complete loss of fluorescence without significant change in relative absorption or emission peaks. These mutations probably cause misfolding of the protein, failure of chromophore formation, or quenching of the fluorescence by insufficient shielding. A few mutations, however, have resulted in enhanced GFP spectra, increased brightness, a slower rate of photobleaching, or a spectral shift resulting in the emission of a different color, such as blue, yellow, or cyan. These GFP variants emitting new colors are thus called blue fluorescent protein (BFP), yellow fluorescent protein (YFP), and cyan fluorescent protein (CFP) (2).


Green Fluorescent Protein Polymerase Chain Reaction Primer Cyan Fluorescent Protein Polymerase Chain Reaction Machine Green Fluorescent Protein Variant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ormo M., Cubitt A. B., Kallio K., Gross L. A., Tsien R. Y., and Remington S. J. (1996) Crystal Structure of the Aequorea victoria Green Fluorescent Protein. Science 273, 1392–1395.PubMedCrossRefGoogle Scholar
  2. 2.
    Cubitt A. B., Heim R., Adams S. R., Boyd A. E., Gross L. A., and Tsien R. Y. (1995) Understanding, improving and using green fluorescent protein. Trends Biochem. Sci. 20, 448–455.PubMedCrossRefGoogle Scholar
  3. 3.
    Chalfie M., Tu Y., Euskirchen G., Ward W. W., and Prasher D. C. (1994) Green Fluorescent Protein as a Marker for Gene Expression. Science 263, 802–805.PubMedCrossRefGoogle Scholar
  4. 4.
    Baba T., Damke H., Hinshaw J. E., Ideda K., Schmid S. L., and Warnock D. E. (1995) Role of dynamin in clathrin-coated vesicle formation. Cold Spring Harb. Symp. Quant. Biol. 60, 235–242.PubMedGoogle Scholar
  5. 5.
    McNiven M. (1998) Dynamin: A molecular motor with pinchase action. Cell. 94, 151–154.PubMedCrossRefGoogle Scholar
  6. 6.
    Urrutia R., Henley J. R., Cook T., and McNiven M. A. (1997) The dynamins: redundant or distinct functions for an expanding family of related GTPases? Proc. Natl. Acad. Sci. USA. 94, 377–384.PubMedCrossRefGoogle Scholar
  7. 7.
    Warnock D. E. and Schmid S. L. (1996) Dynamin GTPase, a force-generating molecular switch. BioEssays. 18, 885–893.PubMedCrossRefGoogle Scholar
  8. 8.
    Cook T. A., Urrutia R., and McNiven M. A. (1994) Identification of dynamin 2, an isoform ubiquitiously expressed in rat tissues. Proc. Natl. Acad. Sci. USA. 91, 644–648.PubMedCrossRefGoogle Scholar
  9. 9.
    Nakata T., Takemura R., and Hirokawa N. (1993) A novel member of the dynamin family of GTP-binding proteins is expressed specifically in the testis. J. Cell Sci. 105, 1–5.PubMedGoogle Scholar
  10. 10.
    Obar R. A., Collins C. A., Hammarback J. A., Shpetner H. S., and Vallee R. B. (1990) Molecular cloning of the micro tubule-associated mechanochemical enzyme dynamin reveals homology with a new family of GTP-binding proteins. Nature. 347, 256–261.PubMedCrossRefGoogle Scholar
  11. 11.
    Sontag J. M., Fykse E. M., Ushkaryov Y., Liu J. P., Robinson P. J., and Sudhof T. C. (1994) Differential expression and regulation of multiple dynamins. J. Biol. Chem. 269, 4547–4554.PubMedGoogle Scholar
  12. 12.
    Damke H., Baba T., Warnock D. E., and Schmid S. L. (1994) Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J. Cell Biol. 127, 915–934.PubMedCrossRefGoogle Scholar
  13. 13.
    Takei K., McPherson P. S., Schmid S. L., and De Camilli P. (1995) Tubular membrane invaginations coated by dynamin rings are induced by GTP-ΓS in nerve terminals. Nature. 374, 186–190.PubMedCrossRefGoogle Scholar
  14. 14.
    Henley J. R., Krueger E. W., Oswald B. J., and McNiven M. A. (1998) Dynamin-mediated internalization of caveolae. J. Cell Biol. 141, 85–99.PubMedCrossRefGoogle Scholar
  15. 15.
    Oh P., McIntosh D. P., and Schnitzer J. E. (1998) Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J. Cell Biol. 141, 101–114.PubMedCrossRefGoogle Scholar
  16. 16.
    Llorente A., Rapak A., Schmid S. L., van Deurs B., and Sandvig K. (1998) Expression of mutant dynamin inhibits toxicity and transport of endocy tosed ricin to the Golgi apparatus. J. Cell Biol. 140, 553–563.PubMedCrossRefGoogle Scholar
  17. 17.
    Henley J. R. and McNiven M. A. (1996) Association of a dynamin-like protein with the Golgi apparatus in mammalian cells. J. Cell Biol. 133, 761–775.PubMedCrossRefGoogle Scholar
  18. 18.
    Jones S. M., Howell K. E., Henley J. R., Cao H., and McNiven M. A. (1998) Role of dynamin in the formation of transport vesicles from the trans-Golgi network. Science 279, 573–577.PubMedCrossRefGoogle Scholar
  19. 19.
    Cao H., Garcia F., and McNiven M. (1998) Differential distribution of dynamin isoforms in mammalian cells. Mol. Biol. Cell. 9, 2595–2609.PubMedGoogle Scholar
  20. 20.
    Chomczynski P. and Sacchi N. (1987) “Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction.” Anal. Biochem. 162(1), 156–159.PubMedCrossRefGoogle Scholar
  21. 21.
    Sambrook J., Fritsch E. F., and Maniatis T. (1989) Molecular Cloning a laboratory manual, second edition, Figure 1.4.Google Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Hong Cao
    • 1
  • Heather Thompson
    • 2
  • Eugene W. Krueger
    • 3
  • Mark McNiven
    • 3
  1. 1.Center for Basic Research in Digestive Diseases,Department of Gastroenterology and HepatologyMayo ClinicRochester
  2. 2.Department of Biochemistry and Molecular Biology,Mayo Graduate SchoolMayo Clinic and FoundationRochester
  3. 3.Center for Basic Research in Digestive Diseases,Department of Gastroenterology and HepatologyMayo Clinic and FoundationRochester

Personalised recommendations