Skip to main content

Modulation of Calpain-Mediated Protein Kinase C Activation Within Intact Cells

  • Protocol
Calpain Methods and Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 144))

  • 670 Accesses

Abstract

An inherent consequence of calpain activation in situ is activation of the ubiquitous signal transduction kinase, protein kinase C (PKC). Whether or not one is directly interested in the effects of PKC, it may be important during experimental design and interpretation to consider that certain PKC-mediated events can essentially compete with calpain-mediated proteolysis. This chapter provides some general approaches that we have developed in our ongoing studies for modulating calpain-mediated PKC activation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murray A. W., Fournier A., and Hardy S. J. (1987) Proteolytic activation of protein kinase C: A physiological reaction? TIBS 12, 53–54.

    CAS  Google Scholar 

  2. Bartus R. T. (1997) The calpain hypothesis of neurodegeneration: Evidence for a common cytotoxic pathway. Neuro scientist 3, 314–327.

    CAS  Google Scholar 

  3. Siman R., Noszek J. C., and Kegerise C. (1989) Calpain I activation is specifically related to excitatory amino acid induction of hippocampal damage. J. Neurosci. 9, 1579–1590.

    PubMed  CAS  Google Scholar 

  4. Fischer I., Romano-Clarke G., and Grynspan F. (1991) Calpain-mediatedproteolysis of MAP1B and MAP2 in developing brain. Neurochem. Res. 16, 891–898.

    Article  PubMed  CAS  Google Scholar 

  5. Kishimoto A., Kajikawa N., Shiota M., and Nishizuka Y. (1983) Proteolytic activation of calcium-activated, phospholipid-dependent protein kinase by calcium-dependent neutral protease. J. Biol. Chem. 258, 1156–1164.

    PubMed  CAS  Google Scholar 

  6. Johnson G. V. W. and Foley V. G. (1993) Calpain-mediated proteolysis of microtubule-associated protein 2 (MAP2) is inhibited by phosphorylation by cAMP-dependent protein kinase, but not by Ca2+/calmodulin-dependent protein kinase II. J. Neurosci. Res. 34, 642–647.

    Article  PubMed  CAS  Google Scholar 

  7. Litersky J. M., Scott C. W., and Johnson G. V. W. (1993) Phosphorylation, calpain proteolysis and tubulin binding of recombinant human tau isoforms. Brain Res. 604, 32–40.

    Article  PubMed  CAS  Google Scholar 

  8. Shea T. B., Beermann M. L., Spencer M. A., and Nixon R. A. (1995) Enhancement of neurite outgrowth following calpain inhibition is mediated by protein kinase C. J. Neurochem. 65, 517–527.

    Article  PubMed  CAS  Google Scholar 

  9. Shea T. B., Spencer M. J., Beermann M. L., Cressman C. M., and Nixon R. A. (1996) Calcium influx into human neuroblastoma cells induces ALZ-50 immunoreactivity: Involvement of calpain-mediated hydrolysis of protein kinase C. J. Neurochem. 66, 1539–1549.

    Article  PubMed  CAS  Google Scholar 

  10. Al Z. and Cohen C. M. (1993) Phorbol 12-myristate 13-acetate-stimulated phosphorylation of erythrocyte membrane skeletal proteins is blocked by calpain inhibitors: Possible role of protein kinase M. Biochem. J. 296, 675–683.

    PubMed  CAS  Google Scholar 

  11. Pontremolli S., Michetti M., Mellon i E., Sparatore B., Salamino F., and Horecker B. L. (1990) Identification of the proteolytically-activated form of protein kinase C in stimulated neutrophils. Proc. Natl. Acad. Sci. U.S.A. 87, 3705–3707.

    Article  Google Scholar 

  12. Shea T. B., Beermann M. L., Griffin W. R., and Leli U. (1994) Degradation of protein kinase C alpha and its free catalytic subunit, protein kinase M, in intact human neuroblastoma cells and under cell-free conditions: Evidence that PKM is degraded by mM calpain-mediated proteolysis at a faster rate than PKC. FEBS Lett. 350, 223–229.

    Article  PubMed  CAS  Google Scholar 

  13. Lanius R. A., Paddon H. B., Mezei M., Wagey R., Krieger C., Pelech S. L., and Shaw C. A. (1995) A role for amplified protein kinase C activity in the pathogenesis of amyotrophic lateral sclerosis. J. Neurochem. 65, 927–930.

    Article  PubMed  CAS  Google Scholar 

  14. Vitto A. and Nixon R. A. (1986) Calcium-activated neutral proteinase of human brain: subunit structure and enzymatic properties of multiple molecular forms. J. Neurochem. 47, 1039–1051.

    Article  PubMed  CAS  Google Scholar 

  15. Cressman C. M., Mohan P. S., Nixon R. A., and Shea T. B. (1995b) Proteolysis of protein kinase C: mM and μM-requiring calpains have different abilities to generate, and degrade, the free catalytic subunit, protein kinase M. FEBS Lett. 67, 223–227.

    Article  Google Scholar 

  16. Lang D., Beermann M. L., Hauser G., Cressman C. M., and Shea T. B. (1995) Phospholipids inhibit proteolysis of protein kinase C alpha by mM calcium-requiring calpain. Neurochem. Res. 20, 1361–1364.

    Article  PubMed  CAS  Google Scholar 

  17. Shea T. B. (1997) Restriction of μM-calcium-requiring calpain activation to the plasma membrane in human neuroblastoma cells: Evidence for regionalized influence of a calpain activator protein. J. Neurosci. Res. 48, 543–550.

    Article  PubMed  CAS  Google Scholar 

  18. Adamec E,. Mercken M., Beermann M. L., Didier M., and Nixon R. A. (1997) Acute rise in the concentration of free cy toplasmic calcium leads to dephosphorylation of the microtubule-associated protein tau. Brain Res. 757, 93–101

    Article  PubMed  CAS  Google Scholar 

  19. Fleming L. M. and Johnson G. V. (1995) Modulation of the phosphorylation state of tau in situ: The roles of calcium and cyclic AMP. Biochem. J. 309, 41–47.

    PubMed  CAS  Google Scholar 

  20. Norman S. G. and Johnson G. V. (1994) Compromised mitochondrial function results in dephosphorylation of tau through a calcium-dependent process in rat brain cerebral cortical slices. Neurochem. Res. 19, 1151–1158.

    Article  PubMed  CAS  Google Scholar 

  21. Samis J. A., Zboril G., and Elce J. S. (1987) Calpain I remains intact and intracellular during platelet activation. Biochem. J. 246, 481–488.

    PubMed  CAS  Google Scholar 

  22. Shea T. B., Parabhakar S., and Ekinci F. J. (1997) μ-amyloid and ionophore-mediated calcium influx evoke neurodegeneration by distinct intracellular pathways: Differential involvement of the calpain/protein kinase C system. J. Neurosci. Res. 49, 759–768.

    Article  PubMed  CAS  Google Scholar 

  23. Pundreddy S. and Shea T. B. (1997) AD-like tau phosphorylation in human neuroblastoma cells following PKC hyperactivation is mediated by MAP kinase. Neurosci. Res. Commun. 21, 173–177.

    Article  CAS  Google Scholar 

  24. Ekinci F. J. and Shea T. B. (1999) Hyperactivation of mitogen-activated protein kinase increases phospho-tau immunoreactivity within human neuroblastoma: Additive and synergistic influence of alteration of additional kinase activities. Cell. Mol. Neurobiol., 19, 248–260.

    Article  Google Scholar 

  25. Guttmann P. R., Elce J. S., Bell P. D., Isbell J. C., and Johnson G. V. W. (1997) Oxidation inhibits substrate proteolysis by calpain 1 but not autolysis. J. Biol. Chem. 272, 2005–2012.

    Article  PubMed  CAS  Google Scholar 

  26. Cressman C. M. and Shea T. B. (1995) Hyperphosphorylation of tau and filopodial retraction following microinjection of protein kinase C catalytic subunits. J. Neurosci. Res. 42, 648–656.

    Article  PubMed  CAS  Google Scholar 

  27. Cressman C. M., Mercken M. M., and Shea T. B. (1995a) Alteration in tau antigenicity and electrophoretic migration by PKCa under cell-free conditions. Neurosci. Res. Commun. 17, 61–64.

    CAS  Google Scholar 

  28. Shea T. B. and Cressman C. M. (1999) The order of exposure of tau to signal transduction kinases alters the generation of “AD-like” phospho-epitopes. Cell. Mol. Neurobiol., 19, 224–235.

    Article  Google Scholar 

  29. Sautiére P.-E., Caillet-Boudin M.-L., Wattez A., and Delacourte A. (1994) Detection of Alzheimer-type tau proteins in okadaic acid-treated SKNSH-SY-5Y neuroblastoma cells. Neurodegeneration 3, 53–60.

    Google Scholar 

  30. Shea T. B. and Fischer I. (1996) Phosphatase inhibition in human neuroblastoma cells alters tau antigenicity and renders it incompetent to associate with exogenous microtubules. FEBS Lett. 380, 63–67.

    Article  PubMed  CAS  Google Scholar 

  31. Shea T. B. and Didier M. (1997) Biphasic effects of phosphatase inhibition on accumulation of tau phospho-isoforms in cultured cerebellar neurons. Neurosci. Res. Commun. 22, 39–44.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Shea, T.B. (2000). Modulation of Calpain-Mediated Protein Kinase C Activation Within Intact Cells. In: Elce, J.S. (eds) Calpain Methods and Protocols. Methods in Molecular Biology™, vol 144. Humana Press. https://doi.org/10.1385/1-59259-050-0:309

Download citation

  • DOI: https://doi.org/10.1385/1-59259-050-0:309

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-632-1

  • Online ISBN: 978-1-59259-050-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics