Molecular Analysis of p94 and Its Application to Diagnosis of Limb Girdle Muscular Dystrophy Type 2A

  • Hiroyuki Sorimachi
  • Yasuko Ono
  • Koichi Suzuki
Part of the Methods in Molecular Biology™ book series (MIMB, volume 144)

Abstract

p94 (also called calpain 3, nCL-1, or CAPN3) is a calpain large subunit homologue, which is predominantly expressed in skeletal muscle (1, 2, 3, 4). The mRNA level of p94 in skeletal muscle is at least 10 times higher than that for the conventional calpain subunits (1). However, the p94 protein is not easily detectable, since p94 undergoes very rapid and extensive autolysis immediately after translation, and its half-life in vitro is less than 10 minutes (5). Thus, analysis of p94 at the protein level is very difficult.

Keywords

Glycerol Phenol Codon Citrate Chloroform 

References

  1. 1.
    Sorimachi H., Imajoh-Ohmi S., Emori Y., Kawasaki H., Ohno S., Minami Y., and Suzuki K. (1989) Molecular cloning of a novel mammalian calcium-dependent protease distinct from both μ-and m-types. Specific expression of the mRNA in skeletal muscle. J. Biol. Chem. 264, 20,106–20,111.PubMedGoogle Scholar
  2. 2.
    Sorimachi H., Ohmi S., Emori Y., Kawasaki H., Saido T. C., Ohno S., Minami Y., and Suzuki K. (1990) A novel member of the calcium-dependent cysteine protease family. Biol. Chem. Hoppe Seyler 371, 171–176.PubMedGoogle Scholar
  3. 3.
    Sorimachi H. and Suzuki K. (1992) Sequence comparison among muscle-specific calpain, p94, and calpain subunits. Biochim. Biophys. Acta 1160, 55–62.PubMedCrossRefGoogle Scholar
  4. 4.
    Ono Y., Sorimachi H., and Suzuki K. (1998) Structure and physiology of calpain, an enigmatic protease. Biochem. Biophys. Res. Commun. 245, 289–294.PubMedCrossRefGoogle Scholar
  5. 5.
    Sorimachi H., Toyama-Sorimachi N., Saido T. C., Kawasaki H., Sugita H., Miyasaka M., Arahata K., Ishiura S., and Suzuki K. (1993) Muscle-specific calpain, p94, is degraded by autolysis immediately after translation, resulting in disappearance from muscle. J. Biol. Chem. 268, 10,593–10,605.PubMedGoogle Scholar
  6. 6.
    Ono Y., Shimada H., Sorimachi H., Richard I., Saido T. C., Beckmann J. S., Ishiura S., and Suzuki K. (1998) Functional defects of a muscle-specific calpain, p94, caused by mutations associated with limb-girdle muscular dystrophy type 2A (LGMD2A). J. Biol. Chem. 273, 17,073–17,078.PubMedCrossRefGoogle Scholar
  7. 7.
    Richard I., Broux O., Allamand V., Fougerousse F., Chiannilkulchai N., Bourg N., Brenguier L., Devaud C., Pasturaud P., Roudaut C., Hillaire D., Passos-Bueno M.-R., Zatz M., Tischfield J. A., Fardeau M., Jackson C. E., Cohen D., and Beckmann J. S. (1995) Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell 81, 27–40.PubMedCrossRefGoogle Scholar
  8. 8.
    Campbell K. P. (1995) Three muscular dystrophies: loss of cytoskeleton-extracellular matrix linkage. Cell 80, 675–679.PubMedCrossRefGoogle Scholar
  9. 9.
    Sorimachi H., Forsberg N. E., Lee H. J., Joeng S. Y., Richard I., Beckmann J. S., Ishiura S., and Suzuki K. (1996) Highly conserved structure in the promoter region of the gene for muscle-specific calpain, p94. Biol. Chem. 377, 859–864.PubMedGoogle Scholar
  10. 10.
    Richard I. and Beckmann J. S. (1996) Molecular cloning of mouse canp3, the gene associated with limb-girdle muscular dystrophy 2A in human. Mamm. Genome 7, 377–379.PubMedCrossRefGoogle Scholar
  11. 11.
    Ohno S., Akita Y., Konno Y., Imajoh S., and Suzuki K. (1988) A novel phorbol ester receptor/protein kinase, nPKC, distantly related to the protein kinase C family. Cell 53, 731–741.PubMedCrossRefGoogle Scholar
  12. 12.
    Takebe Y., Seiki M., Fujisawa J., Hoy P., Yokota K., Arai K., Yoshida M., and Arai N. (1988) SRa promoter: An efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Mol. Cell. Biol. 8, 466–472.PubMedGoogle Scholar
  13. 13.
    Chu G., Hayakawa H., and Berg P. (1987) Electroporation for the efficient transfection of mammalian cells with DNA. Nucleic Acids Res. 15, 1311–1326.PubMedCrossRefGoogle Scholar
  14. 14.
    Saido T. C., Yokota M., Nagao S., Yamaura I., Tani E., Tsuchiya T., Suzuki K., and Kawashima S. (1993) Spatial resolution of fodrin proteolysis in postischemic brain. J. Biol. Chem. 268, 25,239–25,243.PubMedGoogle Scholar
  15. 15.
    Sakamoto K., Sorimachi H., Kinbara K., Tezuka M., Amano S., Yoshizawa T., Sugita H., Ishiura S., and Suzuki K. (1994) Quantification of calpain-related molecules by specific PCR amplification and its application to human muscular dystrophy. Biomed. Res. 15, 337–346.Google Scholar
  16. 16.
    Chomczynski P. and Sacchi N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159.PubMedCrossRefGoogle Scholar
  17. 17.
    Fardeau M., Eymard B., Mignard C., Tome F. M., Richard I., and Beckmann J. S. (1996) Chromosome 15-linked limb-girdle muscular dystrophy: Clinical phenotypes in Réunion island and French metropolitan communities. Neuromuscul. Disord. 6, 447–453.PubMedCrossRefGoogle Scholar
  18. 18.
    Sorimachi H., Kinbara K., Kimura S., Takahashi M., Ishiura S., Sasagawa N., Sorimachi N., Shimada H., Tagawa K., Maruyama K., and Suzuki K. (1995) Muscle-specific calpain, p94, responsible for limb girdle muscular dystrophy type 2A, associates with connectin through IS2, a p94-specific sequence. J. Biol. Chem. 270, 31,158–31,162.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • Hiroyuki Sorimachi
    • 1
  • Yasuko Ono
    • 1
  • Koichi Suzuki
    • 1
  1. 1.Laboratory of Molecular Structure and Function, Institute of Molecular and Cellular BiosciencesUniversity of TokyoTokyoJapan

Personalised recommendations