Assays for Bacterial Mucin-Desulfating Sulfatases

  • Anthony M. Roberton
  • Douglas I. Rosendale
  • Damian P. Wright
Part of the Methods in Molecular Biology™ book series (MIMB, volume 125)


The regions of the gastrointestinal tract that are densely colonized by bacteria secrete mucus that stains as sulfomucus. A body of evidence suggests that the sulfation of mucins is protective against degradation by bacteria, and desulfation is one of the important rate-limiting steps in mucin degradation (1). Bacterial sulfatases that carry out mucin desulfation have been described, but undoubtedly a group of such enzymes will be discovered with distinctive specificities for the differently sulfated sugars found in mucins, and a combination of such enzymes will be required to completely desulfate mucins.


Sialic Acid Human Colon Cancer Cell Line Bacterial Source Diisopropyl Fluorophosphate Sulfatase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Roberton A. M. and Corfield A. P. (1999) Mucin degradation and its significance in inflammatory conditions of the gastrointestinal tract, in: Medical Importance of the Normal Microflora. (Tannock G. W., ed.), Kluwer Acad. Publ. Norwell, MA, pp. 222–261.Google Scholar
  2. 2.
    Levine M. J., Reddy M. S., Tabak L. A., Loomis R. E., Bergey E. J., Jones P. C., Cohen R. E., Stinson M. W., and Al-Hashim I. (1987) Structural aspects of salivary glycoproteins. J. Dent. Res. 66, 436–441.PubMedCrossRefGoogle Scholar
  3. 3.
    Irimura T., Wynn D. M., Hager L. G., Cleary K. R., and Ota D. M. (1991) Human colonic sulfomucin identified by a specific monoclonal antibody. Cancer Res. 51, 5728–5735.PubMedGoogle Scholar
  4. 4.
    Mawhinney T. P., Landrum D. C., Gayer D. A., and Barbero G. J. (1992) Sulfated sialo-oligosaccharides derived from tracheobronchial mucous glycoproteins of a patient suffering from cystic fibrosis. Carbohyd. Res. 235, 179–197.CrossRefGoogle Scholar
  5. 5.
    Lo-Guidice J-M., Wieruszeski J-M., Lemoine J., Verbert A., Roussel P., and Lamblin G. (1994) Sialylation and sulfation of the carbohydrate chains in respiratory mucins from a patient with cystic fibrosis. J. Biol. Chem. 269, 18,794–18,813.PubMedGoogle Scholar
  6. 6.
    Filipe M. I. (1979) Mucins in the human gastrointestinal epithelium: a review. Invest. CellPathol. 2, 195–216.Google Scholar
  7. 7.
    Wesley A. W., Forstner J. F., and Forstner G. G. (1983) Structure of intestinal-mucus glycoprotein from human post-mortem or surgical tissue: inferences from correlation analysis of sugar and sulfate composition of individual mucins. Carbohyd. Res. 115, 151–163.CrossRefGoogle Scholar
  8. 8.
    Roberton A. M., Rabel B., Harding C. A., Tasman-Jones C., Harris P. J., and Lee S. P. (1991) Use of the ileal conduit as a model for studying human small intestinal mucus glycoprotein secretion. Am. J. Physiol. 261, (Gastrointest. Liver Physiol. 24) G728–734.PubMedGoogle Scholar
  9. 9.
    Roberton A. M. and Wright D. P. (1997) Bacterial glycosulfatases and sulfomucin degradation. Can. J. Gastroenterol. 11, 361–366.Google Scholar
  10. 10.
    Mawhinney T. P., Adelstein E., Gayer D. A., Landrum D. C., and Barbero G. J. (1992) Structural analysis of monosulfated side-chain oligosaccharides isolated from human tracheobronchial mucous glycoproteins. Carbohyd. Res. 223, 187–207.CrossRefGoogle Scholar
  11. 11.
    Lo-Guidice J-M., Herz H., Lamblin G., Plancke Y., Roussel P., and Lhermitte M. (1997) Structures of sulfated oligosaccharides isolated from the respiratory mucins of a non-secretor (O, Le(A+B−)) patient suffering from chronic bronchitis. Glycoconjugate J. 14, 113–125.CrossRefGoogle Scholar
  12. 12.
    Sangadala S., Bhat U. R., and Mendicino J. (1993) Structures of sulfated oligosaccharides in human trachea mucin glycoproteins. Mol. Cell. Biochem. 126, 37–47.PubMedCrossRefGoogle Scholar
  13. 13.
    Lo-Guidice J-M., Perini J. M., Lafitte J. J., Ducourouble M. P., Roussel P., and Lamblin G. (1995) Characterization of a sulfotransferase from human airways responsible for the 3-O-sulfation of terminal galactose in N-acetyllactosamine-containing mucin carbohydrate chains. J. Biol. Chem. 270, 27,544–27,550.PubMedCrossRefGoogle Scholar
  14. 14.
    Degroote S., Lo-Guidice J-M., Strecker G., Ducourouble M-P., Roussel P., and Lamblin G. (1997) Characterization of an N-acetylglucosamine-6-O-sulfotransferase from human respiratory mucosa active on mucin carbohydrate chains. J. Biol. Chem. 272, 29,493–29,501.PubMedCrossRefGoogle Scholar
  15. 15.
    Capon C., Laboisse C. L., Wieruszeski J.-M., Maoret J-J., Augeron C., and Fournet B. (1992) Oligosaccharide structures of mucins secreted by the human colonic cancer cell line CL.16E. J. Biol. Chem. 267, 19,248–19,257.PubMedGoogle Scholar
  16. 16.
    Capon C., Wieruszeski J-M., Lemoine J., Byrd J.C., Leffler H., and Kim Y. S. (1997) Sulfated Lewis X determinants as a major structural motif in glycans from LS174T-HM7 human colon carcinoma mucin. J. Biol. Chem. 272, 31,957–31,968.PubMedCrossRefGoogle Scholar
  17. 17.
    Capon C., Leroy Y., Wieruszeski J. M., Ricart G., Strecker G., Montreuil J., and Fournet B. (1989) Structures of O-glycosidically linked oligosaccharides isolated from human meconium glycoproteins. Eur. J. Biochem. 182, 139–182.PubMedCrossRefGoogle Scholar
  18. 18.
    Slomiany B. L. and Meyer K. (1972) Isolation and structural studies of sulfated glyoproteins of hog gastric mucosa. J. Biol. Chem. 247, 5062–5070.PubMedGoogle Scholar
  19. 19.
    Liau Y. H. and Horowitz M. I. (1982) Incorporation in vitro of [3H]glucosamine or [3H] glucose and [35S]SO4 2− into rat gastric mucosa. J. Biol. Chem. 257, 4709–4718.PubMedGoogle Scholar
  20. 20.
    Kuhns W., Jain R. K., Matta K. L., Paulsen H., Baker M. A., Geyer R., and Brockhausen I. (1995) Characterization of a novel mucin sulphotransferase activity synthesizing sulphate O-glycan core 1,3-sulphate-Gal-β-1-3-GalNAc-α-R. Glycobiology 5, 689–697.PubMedCrossRefGoogle Scholar
  21. 21.
    Karlsson N. G., Herrmann A., Karlsson H., Johansson M. E. V., Carlstedt I., and Hansson G. C. (1997) The glycosylation of rat intestinal Muc2 mucin varies between rat strains and the small and large intestine. A study of O-linked oligosaccharides by a mass spectrometric approach. J. Biol. Chem. 272, 27,025–27,034.PubMedCrossRefGoogle Scholar
  22. 22.
    Stanley R. A., Ram S. P., Wilkinson R. K., and Roberton A. M. (1986) Degradation of pig gastric and colonic mucins by bacteria isolated from the pig colon. Appl. Environ. Microbiol. 51, 1104–1109.PubMedGoogle Scholar
  23. 23.
    Roberton A. M., McKenzie C., Scharfe N., and Stubbs L. (1993) A glycosulphatase that removes sulphate from mucus glycoprotein. Biochem. J. 293, 683–689.PubMedGoogle Scholar
  24. 24.
    Tsai H. H., Hart C. A., and Rhodes J. M. (1991) Production of mucin degrading sulphatase and glycosidases by. Bacteroides thetaiotaomicron. Lett. Appl. Microbiol. 13, 97–101.CrossRefGoogle Scholar
  25. 25.
    Tsai H. H., Sunderland D., Gibson G. R., Hart C. A., and Rhodes J. M. (1992) A novel mucin sulphatase from human faeces: its identification, purification and characterisation. Clin. Sci. 82, 447–454.PubMedGoogle Scholar
  26. 26.
    Corfield A. P., Wagner S. A., Clamp J. R., Kriaris M. S., and Hoskins L. C. (1992) Mucin degradation in the human colon: production of sialidase, sialate O-acetylase, N-acetylneuraminate lyase, arylesterase, and glycosulfatase activities by strains of faecal bacteria. Infect. Immun. 60, 3971–3978.PubMedGoogle Scholar
  27. 27.
    Murty V. L. N., Piotrowski J., Morita M., Slomiany A., and Slomiany B. L. (1992) Inhibition of Helicobacter pylori glycosulfatase activity toward gastric sulfomucin by nitecapone. Biochem. Int. 26, 1091–1099.PubMedGoogle Scholar
  28. 28.
    Smalley J. W., Dwarakanath A. D., Rhodes J. M., and Hart C. A. (1994) Mucinsulphatase activity of some oral Streptococci. Caries Res. 28, 416–420.PubMedCrossRefGoogle Scholar
  29. 29.
    Salyers A. A., Valentine P., and Hwa V. (1993) Genetics of polysaccharide utilisation pathways of colonic Bacteroides species, in: Genetics and Molecular Biology of Anaerobic Bacteria. Brock/Springer series in Contemporary Bioscience. (Sebald M., ed.), New York, Springer-Verlag, pp. 505–516.Google Scholar
  30. 30.
    Goso Y. and Hotta K. (1989) Types of oligosaccharide sulphation, depending on mucus glycoprotein source, corpus or antral, in rat stomach. Biochem. J. 264, 805–812.PubMedGoogle Scholar
  31. 31.
    Corfield A. P. and Paraskeva C. (1993) Secreted mucus glycoproteins in cell and organ culture, in: Glycoprotein Analysis in Biomedicine. vol. 14 (Hounsell E. F., ed.), Humana, Totowa, NJ, pp. 211–232.Google Scholar
  32. 32.
    Corfield A. P., Wagner S. A., O’Donnell L. J. D., Durdey P., Mountford R. A., and Clamp J. R. (1993) The roles of enteric bacterial sialidase, sialate O-acetyl esterase, and glycosulfatase in the degradation of human colonic mucin. Glycoconjugate. J. 10, 72–81.CrossRefGoogle Scholar
  33. 33.
    Corfield A. P., Myerscough N., Einerhand A. W. C., van Klinken B. J. W., Decker J. and Paraskeva C. (1999) Biosynthesis of mucin cell and organ culture methods for biosynthetic study, in: Glycoprotein Methods and Protocols: The Mucins (Corfield A. P., ed.), Humana, Totowa, NJ, pp. 219–226.Google Scholar
  34. 34.
    Bashor M. M. (1979) Dispersion and disruption of tissues. Methods Enzymol. 58, 119–131.PubMedCrossRefGoogle Scholar
  35. 35.
    Mian N., Anderson C. E., and Kent P. W. (1979) Effect of O-sulphated groups in lactose and N-acetylneuraminyl-lactose on their enzymic hydrolysis. Biochem. J. 181, 387–399.PubMedGoogle Scholar
  36. 36.
    Corfield A. P., Wagner S. A., and Clamp J. R. (1987) Detection of a carbohydrate sulphatase in human faecal extracts. Biochem. Soc. Trans. 15, 1089.Google Scholar
  37. 37.
    Salyers A. A., Reeves A., and D’Elia J. (1996) Solving the problem of how to eat something as big as yourself: diverse bacterial strategies for degrading polysaccharides. J. Indust. Microbiol. 17, 470–476.CrossRefGoogle Scholar
  38. 38.
    Bond C. S., Clements P. R., Ashby S. J., Collyer C. A., Harrop S. J., Hopwood J. J., and Guss J. M. (1997) Structure of a human lysosomal sulfatase. Structure 5, 277–289.PubMedCrossRefGoogle Scholar
  39. 39.
    Lukatela G., Krauss N., Theis K., Selmer T., Gieselmann V., von Figura K., and Saenger W. (1998) Crystal structure of human arylsulfatase A: the aldehyde function and the metal ion at the active site suggest a novel mechanism for sulfate ester hydrolysis. Biochemistry 37, 3654–3664.PubMedCrossRefGoogle Scholar
  40. 40.
    Meich C., Dierks T., Selmer T., von Figura K., and Schmidt B. (1998) Arylsulfatase from Klebsiella pneumoniae carries a formylglycine generated from a serine. J. Biol. Chem. 273, 4835–4837.CrossRefGoogle Scholar
  41. 41.
    Recksiek M., Selmer T., Dierks T., Schmidt B., and von Figura K. (1998) Sulfatases, trapping of the sulfated enzyme intermediate by substituting the active site formylglycine. J. Biol. Chem. 273, 6096–6103.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • Anthony M. Roberton
    • 1
  • Douglas I. Rosendale
    • 1
  • Damian P. Wright
    • 1
  1. 1.School of Biological SciencesThe University of AucklandAucklandNew Zealand

Personalised recommendations