O-Linked Chain Glycosyltransferases

  • Inka Brockhausen
Part of the Methods in Molecular Biology™ book series (MIMB, volume 125)


The complex O-linked oligosaccharide chains (O-glycans) attached to the polypeptide backbone of mucins are assembled by glycosyltransferases. These enzymes act in the Golgi apparatus in a controlled sequence that is determined by their substrate specificities, their localization in Golgi compartments, and their relative catalytic activities (1). Activities are controlled by many factors, including the membrane environment, metal ions, concentrations of donor and acceptor substrates, cofactors, and, in some cases, posttranslational modifications of enzymes. Cloning of glycosyltransferases has revealed the existence of families of homologous glycosyltransferases with similar actions but encoded by different genes. Thus, many steps in the pathways of O-glycosylation appear to be catalyzed by several related glycosyltransferases that may show slight differences in properties and substrate specificities. The relative expression levels of these enzymes is cell typespecific and appears to be regulated during the growth and differentiation of cells and, during tissue development, and is altered in many disease states (2,3).


High Performance Liquid Chromatography High Performance Liquid Chromatography Sialic Acid Incubation Mixture Enzyme Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Brockhausen I. (1995) Glycoproteins, New Comprehensive Biochemistry Vol 29A, (Montreuil J., Vliegenthart J., and Schachter H., eds.), Elsevier, New York, pp. 201–259.Google Scholar
  2. 2.
    Brockhausen I. (1993) Clinical aspects of glycoprotein biosynthesis. Crit. Rev. Clin. Lab. Sci. 30, 65–151.PubMedCrossRefGoogle Scholar
  3. 3.
    Brockhausen I. and Kuhns W. (1997) Glycoproteins and human disease. Medical Intelligence Unit, CRC Press and Mosby-Yearbook, Chapman & Hall, New York.Google Scholar
  4. 4.
    Gleeson P. A., Teasdale R. D., and Burke J. (1994) Targeting of proteins to the Golgi apparatus. Glycoconj. J. 11, 381–394.PubMedCrossRefGoogle Scholar
  5. 5.
    Hirschberg C. B. (1997) Transporters of nucleotide sugars, nucoleotide sulfate and ATP on the Golgi apparatus: where next? Glycobiology 7, 169–171.PubMedCrossRefGoogle Scholar
  6. 6.
    Brockhausen I., Möller G., Merz G., Adermann K., and Paulsen H. (1990) Control of glycoprotein synthesis: the peptide portion of synthetic O-glycopeptide substrates influences the activity of O-glycan core 1 uridine 5′-diphospho-galactose: N-acetylgalactosamineα-R β3-galactosyl-transferase. Biochemistry 29, 10,206–10,212.PubMedCrossRefGoogle Scholar
  7. 7.
    Roth J., Wang Y., Eckhardt A. E., and Hill R. L. (1994) Subcellular localization of the UDP-N-acetyl-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase-mediated O-glycosylation reaction in the submaxillary gland. Proc. Natl. Acad. Sci. USA 91, 8935–8939.PubMedCrossRefGoogle Scholar
  8. 8.
    Röttger S., White J., Wandall H. H., Olivo J. C., Stark A., Bennett E. P., Whitehouse C., Berger E. G., Clausen H., and Nilsson T. (1998) Localization of three human polypeptide GalNAc-transferases in HeLa cells suggests initiation of O-linked glycosylation throughout the Golgi apparatus. J. Cell Sci. 111, 45–60.PubMedGoogle Scholar
  9. 9.
    Clausen H. and Bennett E. P. (1996) A family of UDP-GalNAc: polypeptide N-acetylgalactosaminyl-transferases control the initiation of mucin-type O-linked glycosylation. Glycobiology 6, 635–646.PubMedCrossRefGoogle Scholar
  10. 10.
    Sutherlin M., Nishimori I., Caffrey T., Bennett E., Hassan H., Mandel U., Mack D., Iwamura T., Clausen H., and Hollingsworth M. (1997) Expression of three UDP-N-acetyl-α-D-galactosamine: polypeptide GalNAc N-acetylgalactosaminyltransferases in adenocarcinoma cell lines. Cancer Res. 57, 4744–4748.PubMedGoogle Scholar
  11. 11.
    O’Connell B. C., Hagen F. K., and Tabak L. A. (1992) The influence of flanking sequence on the O-glycosylation of threonine in vitro. J. Biol. Chem. 267, 25,010–25,018.PubMedGoogle Scholar
  12. 12.
    Brockhausen I., Toki D., Brockhausen J., Peters S., Bielfeldt T., Kleen A., Paulsen H., Meldal M., Hagen F., and Tabak L. (1996) Specificity of O-glycosylation by bovine colostrum UDP-GalNAc: polypeptide α-N-acetylgalactosaminyltransferase using synthetic glycopeptide substrates. Glycoconj. J. 13, 849–856.PubMedCrossRefGoogle Scholar
  13. 13.
    Schachter H. and Brockhausen I. (1992) Glycoconjugates: Composition, Structure and Function. (Allen H. J. and Kisailus E. C., eds.), Marcel Dekker, New York, pp. 263–332.Google Scholar
  14. 14.
    Brockhausen I., Möller G., Pollex-Krüger A., Rutz V., Paulsen H., and Matta K. L. (1992) Control of O-glycan synthesis: specificity and inhibition of O-glycan core 1 UDP-galactose:N-acetylgalactosamine-α-R β3-galactosyltransferase from rat liver. Biochem. Cell Biol. 70, 99–108.PubMedCrossRefGoogle Scholar
  15. 15.
    Granovsky M., Bielfeldt T., Peters S., Paulsen H., Meldal M., Brockhausen J., and Brockhausen I. (1994) O-glycan core 1 UDP-Gal: GalNAc β3-galactosyltransferase is controlled by the amino acid sequence and glycosylation of glycopeptide substrates. Eur. J. Biochem. 221, 1039–1046.PubMedCrossRefGoogle Scholar
  16. 16.
    Cartron J., Andrev J., Cartron J., Bird G. W. G., Salmon C., and Gerbal A. (1978) Demonstration of T-transferase deficiency in Tn-polyagglutinated blood samples. Eur. J.Biochem. 92, 111–119.PubMedCrossRefGoogle Scholar
  17. 17.
    Thurnher M., Rusconi S., and Berger E. G. (1993) Persistent repression of a functional allele can be responsible for galactosyltransferase deficiency in Tn syndrome. J. Clin. Invest. 91, 2103–2110.PubMedCrossRefGoogle Scholar
  18. 18.
    Brockhausen I., Yang J., Dickinson N., Ogata S., and Itzkowitz S. (1998) Mechanism leading to the expression of the cancer-associated sialyl-Tn and Tn antigens in human cancer cells. Glycoconj. J. 15, 595–603.PubMedCrossRefGoogle Scholar
  19. 19.
    Kuan S. F., Byrd J. C., Basbaum C., and Kim Y. S. (1989) Inhibition of mucin glycosylation by aryl-N-acetyl-α-galactosaminides in human colon cancer cells. J. Biol. Chem. 264, 19271–19277.PubMedGoogle Scholar
  20. 20.
    Kojima N., Handa K., Newman W., and Hakomori S.-I. (1992) Inhibition of selectin-dependent tumor cell adhesion to endothelial cells and platelets by blocking O-glycosylation of these cells. Biochem. Biophys. Res. Commun. 182, 1288–1295.PubMedCrossRefGoogle Scholar
  21. 21.
    Williams D. and Schachter H. (1980) Mucin synthesis. I. Detection in canine submaxillary glands of an N-acetylglucosaminyltransferase which acts on mucin substrates. J. Biol. Chem. 255, 11,247–11,252.PubMedGoogle Scholar
  22. 22.
    Bierhuizen M. F. A. and Fukuda M. (1992) Expression cloning of a cDNA encoding UDP-GlcNAc:Galbeta1-3-GalNAc-R (GlcNAc to GalNAc) beta1-6GlcNAc transferase by gene transfer into CHO cells expressing polyoma large tumor antigen. Proc. Natl. Acad. Sci. USA 89, 9326–9330.PubMedCrossRefGoogle Scholar
  23. 23.
    Bierhuizen M., Mattei M. G., and Fukuda M. (1993) Expression of the developmental I antigen by a cloned human cDNA encoding a member of a beta-1,6-N-acetyl-glucosaminyltransferase gene family. Genes Dev. 7, 468–478.PubMedCrossRefGoogle Scholar
  24. 24.
    Kuhns W., Rutz V., Paulsen H., Matta K. L., Baker M. A., Barner M., Granovsky M., and Brockhausen I. (1993) Processing O-glycan core 1, Galβ1–3GalNAcα-R. Specificities of core 2 UDP-GlcNAc:Galβ1-3GalNAc-R β6-N-acetylglucosaminyltransferase and CMP-SA: Galβ1–3GalNAc-R α3-sialyltransferase. Glycoconj. J. 10, 381–394.PubMedCrossRefGoogle Scholar
  25. 25.
    Piller F., Piller V., Fox R., and Fukuda M. (1988) Human T-lymphocyte activation is associated with changes in O-glycan biosynthesis. J. Biol. Chem. 263, 15,146–15,150.PubMedGoogle Scholar
  26. 26.
    Heffernan M., Lotan R., Amos B., Palcic M., Takano R., and Dennis J. W. (1993) Branching beta 1–6N-acetylglucosaminyltransferase and polylactosamine expression in mouse F9 teratocarcinoma cells and differentiated counterparts. J. Biol. Chem. 268, 1242–1251.PubMedGoogle Scholar
  27. 27.
    Vavasseur F., Yang J., Dole K., Paulsen H., and Brockhausen I. (1995) Synthesis of core 3: characterization of UDP-GlcNAc: GalNAc β3-N-acetylglucosaminyl-transferase activity from colonic tissues. Loss of the activity in human cancer cell lines. Glycobiology 5, 351–357.PubMedCrossRefGoogle Scholar
  28. 27a.
    Whitehouse C., (1998) PhD thesis. University of London, London, UK.Google Scholar
  29. 28.
    Skrincosky D., Kain R., El-Battari A., Exner M., Kerjaschki D., and Fukuda M. (1997) Altered Golgi localization of core 2 β-1,6-N-acetylglucosaminyltransferase leads to decreased synthesis of branched O-glycans. J. Biol. Chem. 272, 22,695–22,702.PubMedCrossRefGoogle Scholar
  30. 29.
    Brockhausen I., Matta K. L., Orr J., and Schachter H. (1985) Mucin synthesis. VI. UDP-GlcNAc: GalNAc-R β3-N-acetylglucosaminyltransferase and UDP-GlcNAc: GlcNAcβ1-3GalNAc-R (GlcNAc to GalNAc) β6-N-acetylglucosaminyltransferase from pig and rat colon mucosa. Biochemistry 24, 1866–1874.PubMedCrossRefGoogle Scholar
  31. 30.
    Yang J., Byrd J., Siddiki B., Chung Y., Okuno M., Sowa M., Kim Y., Matta K., and Brockhausen I. (1994) Alterations of O-glycan biosynthesis in human colon cancer tissue. Glycobiology 4, 873–884.PubMedCrossRefGoogle Scholar
  32. 31.
    King M. J., Chan A., Roe R., Warren B. F., Dell A., Morris H. R., Bartolo C. C., Durdey P., and Corfield A. P. (1994) Two different glycosyltransferase defects that result in GalNAcα-O-peptide (Tn) expression. Glycobiology 4, 267–269.PubMedCrossRefGoogle Scholar
  33. 32.
    Shaper J. H. and Shaper N. L. (1992) Enzymes associated with glycosylation. Curr. Opin. Struct. Biol. 2, 701–709.CrossRefGoogle Scholar
  34. 33.
    Koenderman A. H., Koppen P. L., and van den Eijnden D. H. (1987) Biosynthesis of polylactosaminoglycans. Eur. J. Biochem. 166, 199–208.PubMedCrossRefGoogle Scholar
  35. 34.
    Harduin-Lepers A., Shaper J. H., and Shaper N. L. (1993) Characterization of two cis-regulatory regions in the murine β1,4-galactosyltransferase gene: evidence for a negative regulatory element that controls initiation at the proximal site. J. Biol. Chem. 268, 14,348–14,359.PubMedGoogle Scholar
  36. 35.
    Roth J. (1995) Compartmentation of glycoprotein biosynthesis, Glycoproteins (Montreuil J., Vliegenthart J. F. G., and Schachter H., eds.), Elsevier, Amsterdam, pp 287–312.Google Scholar
  37. 36.
    Brockhausen I., Orr J., and Schachter H. (1984) Mucin synthesis. the action of pig gastric mucosal UDP-GlcNAc:Galβ1-3(R1)GalNAc-R2 (GlcNAc to Gal) β3-N-acetyl-glucosaminyltransferase on high molecular weight substrates. Can. J. Biochem. Cell Biol. 62, 1081–1090.PubMedCrossRefGoogle Scholar
  38. 37.
    Piller F., Cartron J.-P., Maranduba A., Veyrieres A., Leroy Y., and Fournet B. (1984) Biosynthesis of blood group I antigens: identification of a UDP-GlcNAc: GlcNAcβ1–3Gal (-R) β1–6(GlcNAc to Gal) N-acetylglucosaminyltransferase in hog gastric mucosa. J. Biol. Chem. 259, 13,385–13,390.PubMedGoogle Scholar
  39. 38.
    Leppänen A., Penttilä L., Niemelä R., Helin J., Seppo A., Lusa S., and Renkonen O. (1991) Human serum contains a novel beta1,6-N-acetylglucosaminyltransferase activity that is involved in midchain branching of oligo(N-acetyllactosaminoglycans). Biochemistry 30, 9287–9296.PubMedCrossRefGoogle Scholar
  40. 39.
    Harduin-Lepers A., Recchi M.-A., and Delannoy P. (1995) 1994, the year of sialyltransferases. Glycobiology 5, 741–758.PubMedCrossRefGoogle Scholar
  41. 40.
    Lee Y. C., Kurosawa N., Hamamoto T., Nakoaka T., and Tsuji S. (1993) Molecular cloning and expression of Gal-beta-1,3GalNAc-alpha-2,3-sialyltransferase from mouse brain. Eur. J. Biochem. 216, 377–385.PubMedCrossRefGoogle Scholar
  42. 41.
    Kurosawa N., Hamamoto T., Inoue M., and Tsuji S. (1995) Molecular cloning and expression of chick Gal beta 1,3GalNAc alpha 2,3-sialyltransferase. Biochim. Biophys. Acta 1244, 216–222.PubMedGoogle Scholar
  43. 42.
    Gillespie W., Paulson J., Kelm S., Pang M., and Baum L. (1993) Regulation of α2,3-sialyltransferase expression correlates with conversion of peanut agglutinin (PNA)+ to PNA phenotype in developing thymocytes. J. Biol. Chem. 268, 3801–3804.PubMedGoogle Scholar
  44. 43.
    Baker M., Taub R., Kanani A., Brockhausen I., and Hindenburg A. (1985) Increased activity of a specific sialyltransferase in chronic myelogenous leukemia. Blood 66, 1068–1071.PubMedGoogle Scholar
  45. 44.
    Whitehouse C., Burchell J., Gschmeissner S., Brockhausen I., Lloyd K., and Taylor-Papadimitriou J. (1997) A transfected sialyltransferase that is elevated in breast cancer and localizes to the medial/trans-Golgi apparatus inhibits the development of core-2-based O-glycans. J. Cell Biol. 137, 1229–1241.PubMedCrossRefGoogle Scholar
  46. 45.
    Beyer T. A., Sadler J. E., Rearick J. I., Paulson J. C., and Hill R. L. (1981) Advances in Enzymology Vol 52, (Meister A. ed.), John Wiley & Sons, New York, pp. 23–175.Google Scholar
  47. 46.
    Kurosawa N., Hamamoto T., Lee Y. C., Nakaoka T., Kojima N., and Tsuji S. (1994) Molecular cloning and expression of GalNAc alpha 2,6-sialyltransferase. J. Biol. Chem. 269, 1402–1409.PubMedGoogle Scholar
  48. 47.
    Kurosawa N., Kojima N., Inoue M., Hamamoto T., and Tsuji S. (1994) Cloning and expression of Gal beta 1,3GalNAc-specific GalNAc alpha 2,6-sialyltransferase. J. Biol. Chem. 269, 19,048–19,053.PubMedGoogle Scholar
  49. 48.
    Bergh M. L. E. and van den Eijnden D. H. (1983) A glycan specificity of fetal calf liver and ovine and porcine submaxillary gland α-N-acetylgalactosaminide α2-6 sialyltransferase. Eur. J. Biochem. 136, 113–118.PubMedCrossRefGoogle Scholar
  50. 49.
    Varki A. (1992) Diversity in the sialic acids. Glycobiology 2, 25–40.PubMedCrossRefGoogle Scholar
  51. 50.
    Carter S., Slomiany A., Gwozdzinski K., Liau Y., and Slomiany B. (1988) Enzymatic sulfation of mucus glycoprotein in gastric mucosa. J. Biol. Chem. 263, 11,977–11,984.PubMedGoogle Scholar
  52. 51.
    Kuhns W., Jain R., Matta K., Paulsen H., Baker M., Geyer R., and Brockhausen I. (1995) Characterization of a novel mucin sulfotransferase activity synthesizing sulfated O-glycan core 1, 3-sulfate-Gal-beta1-3GalNAc-alpha-R. Glycobiology 5, 689–697.PubMedCrossRefGoogle Scholar
  53. 52.
    Lo-Guidice J., Perini J., Lafitte J., Ducourouble M., Roussel P., and Lamblin G. (1995) Characterization of a sulfotransferase from human airways responsible for the 3-O-sulfation of terminal galactose in N-acetyllactosamine-containing mucin carbohydrate chains. J. Biol. Chem. 270, 27,544–27,550.PubMedCrossRefGoogle Scholar
  54. 53.
    Brockhausen I. and Kuhns W. (1997) Role and metabolism of glycoconjugate sulfation. Trends Glycosci. Glycotechnol. 9, 379–398.Google Scholar
  55. 54.
    Tsuboi S., Isogai Y., Hada N., King J. K., Hindsgaul O., and Fukuda M. (1996) 6′-Sulfo sialyl Lex but not 6-sulfo sialyl Lex expressed on the cell surface supports L-selectin-mediated adhesion. J. Biol. Chem. 271, 27,213–27,216.PubMedCrossRefGoogle Scholar
  56. 55.
    Paulsen H. and Aderman K. (1991) Synthese von O-Glycopeptid-Sequenzen des N-terminus von Interleukin-2. Liebigs Ann Chemie 751–769, 771-780.Google Scholar
  57. 56.
    Distler J. J. and Jourdian G. W. (1973) The purification and properties of β-galactosidase from bovine testis. J. Biol. Chem. 248, 6772–6780.PubMedGoogle Scholar
  58. 57.
    Hounsell E. F., Davies M. J., and Renouf D. V. (1996) O-linked protein glycosylation structure and function. Glycoconj. J. 13, 19–26.PubMedCrossRefGoogle Scholar
  59. 58.
    Brockhausen I., Matta K. L., Orr J., Schachter H., Koenderman A. H. L., and van den Eijnden D. H. (1986) Mucin synthesis: conversion of R1-β1–3Gal-R2 to R1-β1–3(GlcNAcβ1–6)Gal-R2 and of R1-β1–3GalNAc-R2 to R1-β1–3(GlcNAcβ1–6)GalNAc-R2 by a β6-N-acetyl-glucosaminyltransferase in pig gastric mucosa. Eur. J. Biochem. 157, 463–474.PubMedCrossRefGoogle Scholar
  60. 59.
    Lo-Guidice J.-M., Herz H., Lamblin G., Plancke Y., Roussel P., and Lhermitte M. (1997) Structures of sulfated oligosaccharides isolated from the respiratory mucins of a non-secretor (O, Lea+b−) patient suffering from chronic bronchitis. Glycoconj. J. 14(1), 113–125.PubMedCrossRefGoogle Scholar
  61. 60.
    Capon C., Leroy Y., Wieruszeski J., Ricart G., Strecker G., Montreuil J., and Fournet B. (1989) Structures of O-glycosidically linked oligosaccharides isolated from human meconium glycoproteins. Eur. J. Biochem. 182, 139–152.PubMedCrossRefGoogle Scholar
  62. 61.
    Dall’Olio F., Malagolini N., Guerrini S., Lau J., and Serafini-Cessi F. (1996) Differentiati on-dependent expression of human β-galactoside α2,6-sialyltransferase mRNA in colon carcinoma CaCo-2 cells. Glycoconj. J. 13, 115–121.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • Inka Brockhausen
    • 1
  1. 1.Division of Rheumatology, Department of MedicineQueen’s UniversityKingstonCanada

Personalised recommendations