Advertisement

Mucin Domains to Explore Disulfide-Dependent Dimer Formation

  • Sherilyn L. Bell
  • Janet F. Forstner
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 125)

Abstract

The viscoelastic properties needed for the protective functions of secretory mucins are in part conditional on the capacity of mucin macromolecules to form linear polymers stabilized by disulfide bonds. The individual mucin monomers have a distinctive structure, consisting of a long central peptide region of tandem repeat sequences, flanked by cysteine-rich regions at each end, which are presumed to mediate polymerization. Secretory mucins contain approx 60–80% carbohydrate, with extensive O-glycosylation in the central tandem repeat regions, and N-linked oligosaccharides in the peripheral regions (1).

Keywords

Conditioned Medium Sialic Acid Luria Broth Secretory Mucin Domain Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Forstner J. F., and Forstner G. G. (1994) Gastrointestinal mucus, in Physiology of the Gastrointestinal Tract (Johnson L. R., ed.), Raven Press, New York, pp. 1255–1283.Google Scholar
  2. 2.
    Allen A. and Pearson J. P. (1993) Mucus glycoproteins of the normal gastrointestinaltract. Eur. J. Gastroenterol. Hepatol. 5, 193–199.CrossRefGoogle Scholar
  3. 3.
    Tytgat K. M. A. J., Swallow D. M., Van Klinken B. J.-W., Büller H. A., Einerhand A. W. C., and Dekker J. (1995) Unpredictable behaviour of mucins in SDS/polyacrylamidegel electrophoresis. Biochem. J. 310, 1053,1054.Google Scholar
  4. 4.
    Pearson J. P., Kaura R., Taylor W., and Allen A. (1982) The composition and polymeric structure of mucus glycoprotein from human gallbladder bile. Biochim. Biophys. Acta 706, 221–228.PubMedCrossRefGoogle Scholar
  5. 5.
    Bell A. E., Sellers L. A., Allen A., Cunliffe W. J., Morris E. R., and Ross-Murphy S. B. (1985) Properties of gastric and duodenal mucus: effect of proteolysis, disulfide reduction, bile, acid, ethanol, and hypertonicity on mucus gel structure. Gastroenterology 88, 269–280.PubMedGoogle Scholar
  6. 6.
    Sellers L. A., Allen A., Morris E. R., and Ross-Murphy S. B. (1987) Mechanical characterization and properties of gastrointestinal mucus gel. Biorheology 24, 615–623.PubMedGoogle Scholar
  7. 7.
    Probst J. C., Gertzen E.-M., and Hoffmann W. (1990) An integumentary mucin (FIM-B. 1) from Xenopus laevis homologous with von Willebrand factor. Biochemistry 29, 6240–6244.PubMedCrossRefGoogle Scholar
  8. 8.
    Xu G., Huan L.-J., Khatri I. A., Wang D., Bennick A., Fahim R. E. F., Forstner G. G., and Forstner J. F. (1992) cDNA for the carboxyl-terminal region of a rat intestinal mucinlike peptide. J. Biol. Chem. 267, 5401–5407.PubMedGoogle Scholar
  9. 9.
    Verweij C. L., Hart M., and Pannekoek H. (1987) Expression of variant von Willebrandfactor (vWF) cDNA in heterologous cells: requirement of the pro-polypeptide in vWF multimer formation. EMBO J. 6, 2885–2890.PubMedGoogle Scholar
  10. 10.
    Voorberg J., Fontijn R., van Mourik J. A., and Pannekoek H. (1990) Domains involved in multimer assembly of von Willebrand factor (vWF): multimerization is independent of dimerization. EMBO J. 9, 797–803.PubMedGoogle Scholar
  11. 11.
    Voorberg J., Fontijn R., Calafat J., Janssen H., Mourik J. A. V., and Pannekoek H. (1991) Assembly and routing of von Willebrand factor variants: the requirements for disulfide-linked dimerization reside within the carboxy-terminal 151 amino acids. J. Cell Biol. 113, 195–205.PubMedCrossRefGoogle Scholar
  12. 12.
    Bhargava A. K., Woitach J. T., Davidson E. A., and Bhavanandan V. P. (1990) Cloning and cDNA sequence of a bovine submaxillary gland mucin-like protein containing two distinct domains. Proc. Natl. Acad. Sci. USA 87, 6798–6802.PubMedCrossRefGoogle Scholar
  13. 13.
    Eckhardt A. E., Timpte C. S., Abernethy J. L., Zhao Y., and Hill R. L. (1991) Porcine submaxillary mucin contains a cystine-rich, carboxyl-terminal domain in addition to a highly repetitive, glycosylated domain. J. Biol. Chem. 266, 9678–9686.PubMedGoogle Scholar
  14. 14.
    Gum J. R., Jr., Hicks J. W., Toribara N. W., Rothe E.-M., Legace R. E., and Kim Y. S. (1992) The human MUC2 intestinal mucin has cysteine-rich subdomains located both upstream and downstream of its central repetitive region. J. Biol. Chem. 267, 21,375–21,383.PubMedGoogle Scholar
  15. 15.
    Lesuffleur T., Roche F., Hill A. S., Lacasa M., Fox M., Swallow D. M., Zweibaum A., and Real F. X. (1995) Characterization of a mucin cDNA clone isolated from HT-29 mucus-secreting cells. J. Biol. Chem. 270, 13,665–13,673.PubMedCrossRefGoogle Scholar
  16. 16.
    Desseyn J.-L., Aubert J.-P., Seuningen I. V., Porchet N., and Laine A. (1997) Genomic organization of the 3′ region of the human mucin gene MUC5B. J. Biol. Chem. 272, 16,873–16,883.PubMedCrossRefGoogle Scholar
  17. 17.
    Keates A. C., Nunes D. P., Afdhal N. H., Troxler R. F., and Offner G. D. (1997) Molecular cloning of a major human gall bladder mucin: complete C-terminal sequence and genomic organization of MUC5B. Biochem. J. 324, 295–303.PubMedGoogle Scholar
  18. 18.
    Toribara N. W., Ho S. B., Gum E., Gum J. R., Jr., Lau P., and Kim Y. S. (1997) The carboxyl-terminal sequence of the human secretory mucin, MUC6. J. Biol. Chem. 272, 16,398–16,403.PubMedCrossRefGoogle Scholar
  19. 19.
    Sambrook J., Fritsch E. F., and Maniatis T. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  20. 20.
    Khatri I., Forstner G., and Forstner J. (1993) Preparation of polyclonal antibodies to native and modified mucin antigens, in Methods in Molecular Biology, Vol. 14: Glycoprotein Analysis in Biomedicine (Hounsell E. F., ed.), Humana Press, Totowa, NJ, pp. 225–235.CrossRefGoogle Scholar
  21. 21.
    Xu G., Forstner G. G., and Forstner J. F. (1996) Interaction of heparin with synthetic peptides corresponding to the C-terminal domain of intestinal mucins. Glycoconj. J. 13, 81–90.PubMedCrossRefGoogle Scholar
  22. 22.
    Higuchi R. (1990) Recombinant PCR, in PCR Protocols (Innis M., Gelfand D. H., and Sninsky J. J., eds.), Academic Press, Toronto, pp. 177–183.Google Scholar
  23. 23.
    Sprague J., Condra J. H., Arnheiter H., and Lazzarini R. A. (1983) Expression of a recombinant DNA gene coding for the vesicular stomatitis virus nucleocapsid protein. J. Virol. 45, 773–781.PubMedGoogle Scholar
  24. 24.
    Delannoy P., Kim I., Emery N., De Bolos C., Verbert A., Degand P., and Huet G. (1996) Benzyl-N-acetyl-α-D-galactosaminide inhibits the sialylation and the secretion of mucins by a mucin secreting HT-29 cell subpopulation. Glycoconj. J. 13, 717–726.PubMedCrossRefGoogle Scholar
  25. 25.
    Perez-Vilar J., Eckhardt A. E., and Hill R. L. (1996) Porcine submaxillary mucin forms disulfide-bonded dimers between its carboxyl-terminal domains. J. Biol. Chem. 271, 9845–9850.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • Sherilyn L. Bell
    • 1
  • Janet F. Forstner
    • 2
  1. 1.Division of Structural Biology and Biochemistry, Research InstituteThe Hospital for Sick ChildrenTorontoCanada
  2. 2.Department of BiochemistryUniversity of TorontoTorontoCanada

Personalised recommendations