Histologically Based Methods for Detection of Mucin

  • Michael D. Walsh
  • Jeremy R. Jass
Part of the Methods in Molecular Biology™ book series (MIMB, volume 125)


Morphologically based studies on mucins allow structural characterization to be linked to specific sites of synthesis and secretion. The histochemical approach to the study of mucin is therefore highly informative. There is a correspondingly large body of literature documenting the tissue distribution of mucins as demonstrated by mucin histochemistry, lectin histochemistry, and immunohistochemistry (and various combinations of these methods). Two principal issues need to be considered in order to maximize the potential value of morphologically based methodologies: (1) nature and limitations of the individual techniques, and (2) interpretation and reporting of mucin staining.


Sialic Acid Goblet Cell Alcian Blue Lectin Histochemistry Dolichos Biflorus Agglutinin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Matsuo K., Ota H., Akamatsu T., Sugiyama A., and Katsuyama T. (1997) Histochemistry of the surface mucous gel layer of the human colon. Gut 40, 782–789.PubMedCrossRefGoogle Scholar
  2. 2.
    Fox C. H., Johnson F. B., Whiting J., and Roller P. P. (1985) Formaldehyde fixation. J. Histochem. Cytochem. 33, 845–853.PubMedGoogle Scholar
  3. 3.
    Shi S. R., Key M. E., and Kalra K. L. (1991) Antigen retrieval in formalin-fixed, paraffin embedded tissues: an enhancement method for immunohistochemical staining based upon microwave oven heating of tissue sections. J. Histochem. Cytochem. 39, 741–748.PubMedGoogle Scholar
  4. 4.
    Southgate H. W. (1927) Note on preparing mucicarmine. J. Pathol. Bacteriol. 30, 729.CrossRefGoogle Scholar
  5. 5.
    Hotchkiss R. D. (1948) A microchemical reaction resulting in the staining of polysacchaide structures in fixed tissue preparations. Arch. Biochem. 16, 131–141.PubMedGoogle Scholar
  6. 6.
    Culling C. F., Reid P. E., and Dunn W. L. (1976) A new histochemical method for the identification and visualization of both side chain acylated and nonacylated sialic acids. J. Histochem. Cytochem. 24, 1225–1230.PubMedGoogle Scholar
  7. 7.
    Reid P. E., Dunn W. L., Ramey C. W., Coret E., Trueman L., and Clay M. G. (1984) Histochemical identification of side chain substituted O-acetylated sialic acids: the PAT-KOH-Bh-PAS and the PAPT-KOH-Bh-PAS procedures. Histochem. J. 16, 623–639.PubMedCrossRefGoogle Scholar
  8. 8.
    Veh R. W., Meesen D., Kuntz D., and May B. (1982) Histochemical demonstration of sidechain substituted sialic acid, in Colonic Carcinogenesis (Malt R. A. and Williamson R. C. N., eds.), MTP Lancaster, UK, pp. 355–365.Google Scholar
  9. 9.
    Stevens A. (1990) Theory and Practice of Histological Techniques, Churchill Livingstone, Edinburgh, UK, p. 107.Google Scholar
  10. 10.
    Steedman H. F. (1950) Alcian 8GS: a new stain for mucin. Quart. J. Microscop. Sci. 91, 477–479.Google Scholar
  11. 11.
    Mowry R. W. (1958) Alcian blue techniques for the histochemical study of acidic carbohydrates. J. Histochem. Cytochem. 6, 82.PubMedGoogle Scholar
  12. 12.
    Spicer S. S. and Meyer D. B. (1960) Histochemical differentiation of acidic mucopolysaccharides by means of combined aldehyde fuchsin-alcian blue staining. Am. J. Clin. Pathol. 33, 453.Google Scholar
  13. 13.
    Spicer S. S. (1965) Diamine methods for differentiating mucosubstances histochemically. J. Histochem. Cytochem. 13, 211–234.PubMedGoogle Scholar
  14. 14.
    Williams G. T. (1985) Transitional mucosa of the large intestine. Histopathology 9, 1237–1243.PubMedCrossRefGoogle Scholar
  15. 15.
    Leathem A. and Atkins N. (1983) Lectin binding to formalin-fixed paraffin sections. J. Clin. Pathol. 36, 747–750.PubMedCrossRefGoogle Scholar
  16. 16.
    Hindsgaul O., Norberg T., Le Pendu J., and Lemieux R. U. (1982) Synthesis of type 2 human blood-group antigenic determinants: the H, X, and Y haptens and variations of the H type 2 determinant as probes for the combining site of the lectin 1 of Ulex europaeus. Carbohydr. Res. 109, 109–142.PubMedCrossRefGoogle Scholar
  17. 17.
    Sata T., Roth J., Zuber C., Stamm B., and Heitz P. U. (1991) Expression of alpha 2,6-linked sialic acid residues in neoplastic but not in normal human colonic mucosa: a lectin-gold cytochemical study with Sambucus nigra and Maackia amurensis lectins. Am. J.Pathol. 139, 1435–1448.PubMedGoogle Scholar
  18. 18.
    Sakiyama T., Yamashita K., Ihida K., Nishimata H., Arima T., and Murata F. (1995) Trichosanthes Japonica agglutinin I staining of human colonic carcinoma: a comparative study using monoclonal antibody against sialosyl-Tn antigen. Acta Histochem. Cytochem. 28, 155–162.Google Scholar
  19. 19.
    Picard J. K. and Feizi T. (1983) Peanut lectin and anti-Ii antibodies reveal structural differences among human gastrointestinal glycoproteins. Mol. Immunol. 20, 1215–1220.PubMedCrossRefGoogle Scholar
  20. 20.
    Jass J. R., Allison L. J., and Edgar S. G. (1995) Distribution of sialosyl Tn and Tn antigens within normal and malignant colorectal epithelium. J. Pathol. 176, 143–149.PubMedCrossRefGoogle Scholar
  21. 21.
    Jass J. R. and Smith M. (1992) Sialic acid and epithelial differentiation in colorectal polyps and cancer-a morphological, mucin and lectin histochemical study. Pathology 24, 233–242.PubMedCrossRefGoogle Scholar
  22. 22.
    Xing P. X., Prenzoska J., Layton G. T., Devine P. L., and McKenzie I. F. (1992) Second-generation monoclonal antibodies to intestinal MUC2 peptide reactive with colon cancer. J. Natl. Cancer Inst. 84, 699–703.PubMedCrossRefGoogle Scholar
  23. 23.
    Irimura T., Wynn D. M., Hager L. G., Cleary K. R., and Ota D. M. (1991) Human colonic sulfomucin identified by a specific monoclonal antibody. Cancer Res. 51, 5728–5735.PubMedGoogle Scholar
  24. 24.
    Jass J. R., Allison L. M., and Edgar S. (1994) Monoclonal antibody TKH2 to the cancer-associated epitope sialosyl Tn shows cross-reactivity with variants of normal colorectal goblet cell mucin. Pathology 26, 418–422.PubMedCrossRefGoogle Scholar
  25. 25.
    Ogata S., Ho I., Chen A., Dubois D., Maklansky J., Singhal A., Hahomori S., Itzkowitz S. H. (1995) Tumor-associated sialylated antigens are constitutively expressed in normal human colonic mucosa. Cancer Res. 55, 1869–1874.PubMedGoogle Scholar
  26. 26.
    Ajioka Y., Xing P. X., Hinoda Y., and Jass J. R. (1997) Correlative histochemical study providing evidence for the dual nature of human colorectal cancer mucin. Histochemical J. 29, 143–152.CrossRefGoogle Scholar
  27. 27.
    Yuan M., Itzkowitz S. H., Palekar A., Shamsuddin A. M., Phelps P. C., Trump B. F., Kim Y. S. (1985) Distribution of blood group antigens A, B, H, Lewis a, and Lewis b in human normal, fetal, and malignant colonic tissue. Cancer Res. 45, 4499–4511.PubMedGoogle Scholar
  28. 28.
    Jass J. R., Allison L. J., Stewart S. M., and Lane M. R. (1994) Dilochus biflorus agglutinin binding in hereditary bowel cancer. Pathology 26, 110–114.PubMedCrossRefGoogle Scholar
  29. 29.
    Ajioka Y., Allison L. J., and Jass J. R. (1996) Significance of MUC1 and MUC2 mucin expression in colorectal cancer. J. Clin. Pathol. 49, 560–564.PubMedCrossRefGoogle Scholar
  30. 30.
    Sugihara K. and Jass J. R. (1986) Colorectal goblet cell sialomucin heterogeneity: its relation to malignant disease. J. Clin. Pathol. 39, 1088–1095.PubMedCrossRefGoogle Scholar
  31. 31.
    Fuller C. E., Davies R. P., Williams G. T., and Williams E. D. (1990) Crypt restricted heterogeneity of goblet cell mucus glycoprotein in histologically normal human colonic mucosa: a potential marker of somatic mutation. Br. J. Cancer 61, 382–384.PubMedCrossRefGoogle Scholar
  32. 32.
    Van Diest P. J., Van Dam P., Henzen-Logmans S. C., Berns E., van der Burg M. E. L., Green J., Veragte I. et al. (1997) A scoring system for immunohistochemical staining: consensus report of the task force for basic research of the EORTC-GCCG. J. Clin. Pathol. 50, 801–804.PubMedCrossRefGoogle Scholar
  33. 33.
    Fritz P., Wu X., Tuczek H., Multhaupt H., and Schwarzmann P. (1995) Quantitation in immunohistochemistry: a research method or a diagnostic tool in surgical pathology? Pathologica 87, 300–309.PubMedGoogle Scholar
  34. 34.
    Barger J. D. and DeLamater E. D. (1948) The use of thionyl chloride in the preparation of Schiff’s reagent. Science 108, 121–122.CrossRefGoogle Scholar
  35. 35.
    Spicer S. S. (1960) A correlative study of the histochemical properties of rodent acid mucopoly saccharides. J. Histochem. Cytochem. 8, 18.PubMedGoogle Scholar
  36. 36.
    Culling C. F. A. (1974) Handbook of Histopathological and Histochemical Techniques, Butterworths, London.Google Scholar
  37. 37.
    Colton C. A., Abel C., Patchett J., Keri J., and Yao J. (1992) Lectin staining of cultured CNS microglia. J. Histochem. Cytochem. 40, 505–512.PubMedGoogle Scholar
  38. 38.
    Ono K., Katsuyama T., and Hotchi M. (1983) Histochemical application of mild alkaline hydrolysis for selective elimination of O-glycosidically linked glycoproteins. Stain Technol. 58, 309–312.PubMedGoogle Scholar
  39. 39.
    Bara J., Decaens C., Loridon-Rosa B., and Oriol R. (1992) Immunohistological characterization of mucin epitopes by pre-treatment of gastrointestinal sections with periodic acid. J. Immunol. Methods 149, 105–113.PubMedGoogle Scholar
  40. 40.
    Bara J., Imberty A., Perez S., Imai K., Yachi A., and Oriol R. (1993) A fucose residue can mask the MUC-1 epitopes in normal and cancerous gastric mucosae. Int. J. Cancer 54, 607–613.PubMedCrossRefGoogle Scholar
  41. 41.
    Ohno J., Ohshima Y., Arakaki Z., Yokoyama S., and Utsumi N. (1993) Immunohistochemical detection of sialyl Le(x) antigen on mucosal Langerhans cells of human oral mucosa following neuraminidase pretreatment. Biotech. Histochem. 68, 284–289.PubMedCrossRefGoogle Scholar
  42. 42.
    Reis C. A., David L., Nielsen P. A., Clausen H., Mirgorodskaya K., Roepstorff P., and Sobrinho-Simoes M. (1997) Immunohistochemical study of MUC5AC expression in human gastric carcinomas using a novel monoclonal antibody. Int. J. Cancer 74, 112–121.PubMedCrossRefGoogle Scholar
  43. 43.
    Akashi K., Hinoda Y., Itoh F., Adachi M., Endo T., and Imai K. (1997) A novel gastric-cancer-associated mucin antigen defined by a monoclonal antibody A3D4. Int. J. Cancer 73, 795–801.PubMedCrossRefGoogle Scholar
  44. 44.
    Bartek J., Durban E. M., Hallowes R. C., and Taylor-Papadimitriou J. (1985) A subclass of luminal epithelial cells in the human mammary gland, defined by antibodies to cytokeratins. J. Cell Sci. 75, 17–33.PubMedGoogle Scholar
  45. 45.
    Kiernan J. A. (1990) Histological and Histochemical Methods: Theory and Practice, Pergamon, Oxford, UK.Google Scholar
  46. 46.
    Andrew S. M. and Jasani B. (1987) An improved method for the inhibition of endogenous peroxidase non-deleterious to lymphocyte surface markers: application to immu-noperoxidase studies on eosinophil-rich tissue preparations. Histochem. J. 19, 426–430.PubMedCrossRefGoogle Scholar
  47. 47.
    Ponder B. A. and Wilkinson M. M. (1981) Inhibition of endogenous tissue alkaline phos-phatase with the use of alkaline phosphatase conjugates in immunohistochemistry. J. Histochem. Cytochem. 29, 981–984.PubMedGoogle Scholar
  48. 48.
    Hill A. S. and Skerritt J. H. (1989) Monoclonal antibody-based two-site enzyme-immu-noassays for wheat gluten proteins. 1. Kinetic characteristics and comparison with other ELISA formats. Food Agric. Immunol. 1, 147–160.CrossRefGoogle Scholar
  49. 49.
    Rhodes J. M. and Milton J. D. (1986) Lectin Methods and Protocols, Humana, Totowa, NJ.Google Scholar
  50. 50.
    Liener I. E., Sharon N., and Goldstein I. J. (1998) The Lectins: Properties, Functions, and Applications in Biology and Medicine, Academic, Orlando, FL.Google Scholar
  51. 51.
    Bankfalvi A., Navabi H., Bier B., Bocker W., Jasani B., and Schmid K. W. (1994) Wet autoclave pretreatment for antigen retrieval in diagnostic immunohistochemistry. J. Pathol. 174, 223–228.PubMedCrossRefGoogle Scholar
  52. 52.
    Miller R. T. and Estran C. (1995) Heat induced epitope retrieval with a pressure cooker: suggestions for optimal use. Appl. Immunohistochem. 3, 190–193.Google Scholar
  53. 53.
    Cao Y., Blohm D., Ghadimi B. M., Stosiek P., Xing P. X., and Karsten U. (1997) Mucins (MUC1 and MUC3) of gastrointestinal and breast epithelia reveal different and heterogeneous tumor associated aberrations in glycosylation. J. Histochem. Cytochem. 45, 1547–1557.PubMedGoogle Scholar
  54. 54.
    Bara J., Chastre E., Mahiou J., Singh R. L., Forguelafitte M. E., Hollande E., and Godeau F. (1998) Gastric M1 mucin, an early oncofetal marker of colon carcinogenesis, is encoded by the MUC5 AC gene. Int. J. Cancer 75, 767–773.PubMedCrossRefGoogle Scholar
  55. 55.
    Ho J. J. L., Cheng S., and Kim Y. S. (1995) Access to peptide regions of a surface mucin (MUC1) is reduced by sialic acids. Biochem. Biophys. Res. Commun. 210, 866–873.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • Michael D. Walsh
    • 1
  • Jeremy R. Jass
    • 1
  1. 1.Department of PathologyThe University of Queensland Medical School, HerstonBrisbaneAustralia

Personalised recommendations