Skip to main content

Antibodies to MMP-Cleaved Aggrecan

  • Protocol
  • 835 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 151))

Abstract

The matrix metalloproteinases (MMPs) have a pivotal role in both normal and pathological turnover of the extracellular matrix. Whereas MMP protein can easily be detected by immunolocalization or Western blot analysis, the determination of whether or not an MMP is active and acting on a particular substrate has been more difficult. If the primary sequence and unique cleavage sites within the substrate are known, one means of unambiguously identifying MMP activity is to use antibodies with a unique specificity for antigenic determinants on the newly created N- or C- termini of the degradation products. By definition, these “neoepitope” antibodies recognize a terminal sequence exclusively and do not recognize the same sequence of amino acids located internally as part of the intact protein. This approach has been extremely successful for detecting MMP-derived fragments of aggrecan (the large cartilage proteoglycan) (15) and collagen (6), since aggrecan and collagen are abundant in cartilage matrix, and their neoepitopes are correspondingly abundant. Often MMPs are not the only pro-teinases involved in tissue remodeling and in this situation neoepitope antibodies allow fragments derived from MMPs and other proteinases to be distinguished from each other and compared. In cartilage, aggrecan degradation is mediated by both MMPs, and aggrecanase (7,8) which are members of the ADAMTS family of proteinases (9). The production and use of neoepitope antibodies for investigating cartilage catabolism was first described by Hughes et al. (10). Thereafter neoepitope antibodies were quickly recognized as ideal tools for resolving the products of separate degradative pathways involved in aggrecanolysis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hughes C. E., Caterson B., Fosang A. J., Roughley P. J., and Mort J. S. (1995) Monoclonal antibodies that specifically recognize neo-epitope sequences generated by “aggrecanase” and matrix metalloproteinase cleavage of aggrecan: application to catabolism in situ and in vitro. Biochem. J. 305, 799–804.

    PubMed  CAS  Google Scholar 

  2. Lark M. W., Williams H., Hoerrner L. A., Weidner J., Ayala J. M., Harper C. F., Christen A., Olszewski J., Konteatis Z., Webber R., and Mumford R. A. (1995) Quantification of a matrix metalloproteinase-generated aggrecan G1 fragment using monospecific anti-peptide serum. Biochem. J. 307, 245–252.

    PubMed  CAS  Google Scholar 

  3. Sztrolovics R., Alini M., Roughley P. J., and Mort J. S. (1997) Aggrecan degradation in human intervertebral disc and articular cartilage. Biochem. J. 326, 235–241.

    PubMed  CAS  Google Scholar 

  4. Fosang A. J., Last K., Gardiner P., Jackson D. C., and Brown L. (1995) Development of a cleavage site-specific monoclonal antibody for detecting metal-loproteinase-derived aggrecan fragments: detection of fragments in human synovial fluids. Biochem. J. 310, 337–343.

    PubMed  CAS  Google Scholar 

  5. Büttner F. H., Hughes C. E., Margerie D., Lichte A., Tschesche H., Caterson B., and Bartnik E. (1998) Membrane type 1 matrix metalloproteinase (MT1-MMP) cleaves the recombinant aggrecan substrate rAgg1mut at the ‘aggrecanase’ and the MMP sites. Characterization of MT1-MMP catabolic activities on the interglobular domain of aggrecan. Biochem. J. 333, 1–65.

    Google Scholar 

  6. Billinghurst R. C., Dahlberg L., Ionescu M., Reiner A., Bourne R., Ror-abeck C., Mitchell P., Hambor J., Diekmann O., Tschesche H., Chen J., Van Wart H., and Poole A. R. (1997) Enhanced cleavage of type II collagen by colla-genases in osteoarthritic articular cartilage. J. Clin. Invest. 99, 1534–1545.

    Article  PubMed  CAS  Google Scholar 

  7. Tortorella M. D., Burn T. C., Pratta M. A., Abbaszade I., Hollis J. M., Liu R., Rosenfeld S. A., Copeland R. A., Decicco C. P., Wynn R., Rockwell A., Yang F., Duke J. L., Solomon K., George H., Bruckner R., Nagase H., Itoh Y., Ellis D. M., Ross H., Wiswall B. H., Murphy K., Hillman M. C. J., Hollis G. F., Newton R. C., Magolda R. L., Trzaskos J. M., and Arner E. C. (1999) Purification and cloning of aggrecanase-1: A member of the ADAMTS family of proteins. Science 284, 1664–1666.

    Article  PubMed  CAS  Google Scholar 

  8. Abbaszade I., Liu R. Q., Yang F., Rosenfeld S. A., Ross O. H., Link J. R., Ellis D. M., Tortorella M. D., Pratta M. A., Hollis J. M., Wynn R., Duke J. L., George H. J. Hillman M. C. J., Murphy K., Wiswall B. H., Copeland R. A., Decicco C. P., Bruckner R., Nagase H., Itoh Y., Newton R. C., Magolda R. L., Trzaskos J. M., Hollis G. F., Arner E. C., and Burn T. C. (1999) Cloning and characterization of ADAMTS11, an aggrecanase from the ADAMTS family. J. Biol. Chem. 274, 23,443–23,450.

    Article  PubMed  CAS  Google Scholar 

  9. Tang B. L. and Hong W. (1999) ADAMTS: a novel family of proteases with an ADAM protease domain and thrombospondin repeats. FEBS LETT. 445, 223–225.

    Article  PubMed  CAS  Google Scholar 

  10. Hughes C., Caterson B., White R. J., Roughley P. J., and Mort J. S. (1992) Monoclonal antibodies recognizing protease-generated neoepitopes from cartilage proteoglycan degradation. J. Biol. Chem. 267, 16,011–16,014.

    PubMed  CAS  Google Scholar 

  11. Jameson B. A. and Wolf H. (1988) The antigenic index: a novel algorithm for predicting antigenic determination. CABIOS 4, 181–186.

    PubMed  CAS  Google Scholar 

  12. Lark M. W., Gordy J. T., Weidner J. R., Ayala J., Kimura J. H., Williams H. R., Mumford R. A., Flannery C. R., Carlson S. S., Iwata M., and Sandy J. D. (1995) Cell-mediated catabolism of aggrecan. Evidence that cleavage at the “aggrecanaserd site (Glu373-Ala374) is a primary event in proteolysis of the interglobular domain. J. Biol. Chem. 270, 2550–2556.

    Article  PubMed  CAS  Google Scholar 

  13. Hutton S., Hayward J., Maciewicz R. A., and Bayliss M. (1996) Age-related and zonal distribution of aggrecanase activity in normal and osteoarthritic human articular cartilage. Trans. Orthop. Res. Soc. 21, 150.

    Google Scholar 

  14. Chambers M. G., Cox L. J., Chong L., Maciewicz R., Bayliss M. T., and Mason R. M. (1998) Localization of neoepitopes for “aggrecanase” and general metalloproteinases in normal and osteoarthritic murine articular cartilage. Trans. Orthop. Res. Soc 23, 436.

    Google Scholar 

  15. Mercuri F. A., Doege K. J., Arner E. C., Pratta M. A., Last K., and Fosang A. J. (1999) Recombinant human aggrecan G1-G2 exhibits native binding properties and substrates specificity for matrix metalloproteinases and aggrecanase. J. Biol. Chem. 274, 32,387–32,395.

    Article  PubMed  CAS  Google Scholar 

  16. Arner E. C., Pratta M. A., Newton R. C., Trzaskos J., Magolda R., and Tortorella M. D. (1998) Comparison of cleavage efficiency of aggrecanase and stromelysin for the aggrecan core protein. Trans. Orthop. Res. Soc. 23, 922.

    Google Scholar 

  17. Billington C. J., Clark I. M., and Cawston T. E. (1998) An aggrecan-degrading activity associated with chondrocyte membranes. Biochem. J. 336, 1–212.

    Google Scholar 

  18. Wade J. D., Bedford J., Sheppard R. C., and Tregear G. W. (1991) DBU as an N alpha-deprotecting reagent for the fluorenylmethoxycarbonyl group in continuous flow solid-phase peptide synthesis. Pept. Res. 4, 194–199.

    PubMed  CAS  Google Scholar 

  19. Pennington M. W. and Dunn B. M. (eds.) (1994) Methods in Molecular Biology, vol. 35: Peptide Synthesis Protocols. Humana Press Totowa, NJ.

    Google Scholar 

  20. Bernatowicz M. S. and Matsueda G. R. (1986) Preparation of peptide-protein immunogens using N-succinimidyl bromoacetate as a heterobifunctional cross-linking reagent. Anal. Biochem. 155, 95–102.

    Article  PubMed  CAS  Google Scholar 

  21. Goding J. W. (1986) Monoclonal antibodies: Principles and Practice. Academic Press Sydney, Australia.

    Google Scholar 

  22. Hurn B. A. and Chantler S. M. (1980) Production of reagent antibodies. Methods Enzymol. 70, 104–142.

    Article  PubMed  CAS  Google Scholar 

  23. Fosang A. J. and Hardingham T. E. (1989) Isolation of the N-terminal globular domains from cartilage proteoglycans. Identification of G2 domain and its lack of interaction with hyaluronate and link protein. Biochem. J. 261, 801–809.

    PubMed  CAS  Google Scholar 

  24. Hughes C. E., Büttner F. H., Eidenmuller B., Caterson B., and Bartnik E. (1997) Utilization of a recombinant substrate rAgg1 to study the biochemical properties of aggrecanase in cell culture systems. J. Biol. Chem. 272, 20,269–20,274.

    Article  PubMed  CAS  Google Scholar 

  25. Doege K. J., Sasaki M., Kimura T., and Yamada Y. (1991) Complete coding sequence and deduced primary structure of the human cartilage large aggregating proteoglycan, aggrecan. Human specific repeats and additional alternatively spliced forms. J. Biol. Chem. 266, 894–902.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Fosang, A.J., Last, K., Jackson, D.C., Brown, L. (2001). Antibodies to MMP-Cleaved Aggrecan. In: Clark, I.M. (eds) Matrix Metalloproteinase Protocols. Methods in Molecular Biology™, vol 151. Humana Press. https://doi.org/10.1385/1-59259-046-2:425

Download citation

  • DOI: https://doi.org/10.1385/1-59259-046-2:425

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-733-5

  • Online ISBN: 978-1-59259-046-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics