Skip to main content

Matrix MetaIIoproteinase Substrate Binding Domains, Modules and Exosites

Overview and Experimental Strategies

  • Protocol
Matrix Metalloproteinase Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 151))

Abstract

Connective tissue degradation occurs in chronic inflammatory diseases such as arthritis and periodontitis to adversely affect life quality. More importantly, disturbances in connective tissue homeostasis may be life threatening in various lung, neurological, and cardiovascular diseases and is pivotal in tumor metastasis. Matrix metalloproteinases (MMPs) form one of the most important families of proteinases that participate in the degradative aspects of these diseases. The specific inhibition of MMPs by the four members of the tissue inhibitor of metalloproteinase (TIMP) family can regulate the extracellular activity of MMPs (1). Not surprisingly, altered TIMP expression is also known to occur in many disease processes. Activation of MMP zymogens is another critical aspect of the regulation of connective tissue matrix composition, structure, and function. For some soluble MMPs, activation occurs at the cell surface following proteolytic cleavage by membrane type MMPs (MT-MMPs), often in a TIMP-dependent pathway. For other MMPs, activation occurs in the extracellular environment in an activation cascade initiated by tissue proteinases, such as plasmin, kallikrein, and tryptase, a process that is often amplified by the activated MMPs themselves functioning as proMMP activators. Therefore, understanding the structural basis of MMP function, in particular substrate recognition and cleavage, MMP inhibition by TIMPs and synthetic inhibitors, and the domain:domain interactions that occur in the activation and association of MMPs and TIMPs with the cell membrane and in the matrix, may point to new avenues of therapeutic intervention or refine existing MMP inhibitor strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Overall C. M. (1994) Regulation of tissue inhibitor of matrix metalloproteinase expression. Ann. N.Y. Acad. Sci. 732, 51–64.

    PubMed  CAS  Google Scholar 

  2. Muller D., Quantin B., Gesnel M. C., Millon-Collard R., Abecassis J., and Breathnach R. (1988) The collagenase gene family in humans consists of at least four members. Biochem. J. 253, 187–192.

    PubMed  CAS  Google Scholar 

  3. Velasco G., Pendas A. M., Fueyo A., Knauper V., Murphy G., and Lopez-Otin C. (1999) Cloning and characterization of human MMP-23, a new matrix metalloproteinase predominantly expressed in reproductive tissues and lacking conserved domains in other family members. J. Biol. Chem. 274, 4570–4576.

    PubMed  CAS  Google Scholar 

  4. Yang M., Murray M. T., and Kurkinen M. (1997) A novel matrix metalloproteinase gene (XMMP) encoding vitronectin-like motifs is transiently expressed in Xenopus laevis early embryo development. J. Biol. Chem. 272, 13,527–13,533.

    PubMed  CAS  Google Scholar 

  5. Sang Q. A. and Douglas D. A. (1996) Computational sequence analysis of matrix metalloproteinases. J. Protein Chem. 15, 137–160

    PubMed  CAS  Google Scholar 

  6. Massova I., Kotra L. P., Fridman R., and Mobashery S. (1998) Matrix metalloproteinases: structure, evolution, and diversification. FASEB J. 12, 1075–1095.

    PubMed  CAS  Google Scholar 

  7. Collier I. E., Wilhelm S. M., Eisen A. Z., Marme r B. L., Gran t G. A., Seltzer J. L., Kronberger A, He C. S., Bauer E. A., and Goldberg G. I. (1988) H-ras oncogene-transformed human bronchial epithelial cells (TBE-1) secrete a single metalloprotease capable of degrading basement membrane collagen. J. Biol. Chem. 263, 6579–6587.

    PubMed  CAS  Google Scholar 

  8. Wilhelm S. M., Collier I. E., Marmer B. L., Eisen A. Z., Grant G. A., and Goldberg G. I. (1989) SV40-transformed human lung fibroblasts secrete a 92-kDa type IV collagenase which is identical to that secreted by normal human macrophages. J. Biol. Chem. 264, 17,213–17,221.

    PubMed  CAS  Google Scholar 

  9. Steffensen B. J., Wallon U. M., and Overall C. M. (1995) Extracellular matrix binding properties of recombinant fibronectin type II-like modules of human 72-kDa gelatinase/type IV collagenase. High affinity binding to native type I collagen but not native type IV collagen. J. Biol. Chem. 270, 11,555–11,566.

    PubMed  CAS  Google Scholar 

  10. Overall C. M., Wallon U. M., Steffensen B., De Clerk Y., Tschesche H., and Abbey R. (2000) In Inhibitors of matrix metalloproteinases in development and disease (Edwards D., Hawkes S., and Kokha R., eds.) Gordon and Breach, Amsterdam Holland, pp. 57–69.

    Google Scholar 

  11. Ohuchi E., Imai K., Fujii Y., Sato H., Seiki M., and Okada Y. (1997) Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J. Biol. Chem. 272, 2446–2451.

    PubMed  CAS  Google Scholar 

  12. Pei D. and Weiss S. J. (1996) Transmembrane-deletion mutants of the membrane-type matrix metalloproteinase-1 process progelatinase A and express intrinsic matrix-degrading activity. J. Biol. Chem. 271, 9135–9140.

    PubMed  CAS  Google Scholar 

  13. Hewitt R. E., Corcoran M. L., and Stetler-Stevenson W. G. (1996) The Activation, Expression and Purification of Gelatinase A (MMP2). Trends Glycosci. Glycotechnol. 8, 23–36.

    CAS  Google Scholar 

  14. Sodek J. and Overall C. M. (1988) In The Biological Mechanisms of Tooth Eruption and Root Resorption, Edited by Davidovitch Z., Published by EBSCO Media, Birmingham, AL, pp. 303–311.

    Google Scholar 

  15. Werb Z., Tremble P. M., Behrendtsen E., Crowley E., and Damsky C. H. (1989) Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression. J. Cell Biol. 109, 877–889.

    PubMed  CAS  Google Scholar 

  16. Bork P., Downing A. K., Kieffer B., and Campbell I. D. (1996) Structure and distribution of modules in extracellular proteins. QuatRev. Biophys. 29, 119–167.

    CAS  Google Scholar 

  17. Patthy L. (1991) Exons—original building blocks of proteins? Bioessays 13, 187–192.

    PubMed  CAS  Google Scholar 

  18. Patthy L. (1996) Exon shuffling and other ways of module exchange. Matrix Biol. 15, 301–310.

    PubMed  CAS  Google Scholar 

  19. Gilbert W. (1978) Why genes in pieces? Nature 271, (5645), 501.

    PubMed  Google Scholar 

  20. Blake C. (1979) Exons encode protein functional units. Nature 277, (5698), 598.

    PubMed  Google Scholar 

  21. Dorit R. L., Schoenbacher L., and Gilbert W. (1990) How big is the universe of exons? Science 250, 1377–1382.

    PubMed  CAS  Google Scholar 

  22. Campbell I. D. and Downing A. K. (1998) NMR of modular proteins. Nature Struct. Biol. NMR Supp. 496–499.

    Google Scholar 

  23. Collier I. E., Bruns G. A. P., Goldberg G. I., and Gerhard D. S. (1991) On the structure and chromosome location of the 72-and 92-kDa human type IV collagenase genes. Genomics 9, 429–434.

    PubMed  CAS  Google Scholar 

  24. Li J., Brick P., O’Hare M. C., Skarzynski T., Lloyd L. F., Curry V. A., Clark I. M., Bigg H. F., Hazleman B. L., Cawston T. E., and Blow D. M. (1995) Structure of full-length porcine synovial collagenase reveals a C-terminal domain containing a calcium-linked, four-bladed beta-propeller. Structure 3, 541–549.

    PubMed  CAS  Google Scholar 

  25. Libson A. M., Gittis A. G., Collier I. E., Marmer B. L., Goldberg G. I., and Lattman E. E. (1995) Crystal structure of the haemopexin-like C-terminal domain of gelatinase A. Nature Struct. Biol. 2, 938–942.

    PubMed  CAS  Google Scholar 

  26. Gohlke U., Gomis-üth F-Z., Crabbe T., Murphy G., Docherty A. J. P., and Bode W. (1996) The C-terminal (haemopexin-like) domain structure of human gelatinase A (MMP2): structural implications for its function. FEBS Letters 378, 126–130.

    PubMed  CAS  Google Scholar 

  27. Gomis-Rüth F. X., Gohlke U., Betz M., Knauper V., Murphy G., López-Otín C., and Bode W. (1996) The helping hand of collagenase-3 (MMP-13): 2.7 A crystal structure of its C-terminal haemopexin-like domain. J. Mol. Biol. 264, 556–566.

    PubMed  Google Scholar 

  28. Wallon U. M. and Overall C. M. (1997) The hemopexin-like domain (C domain) of human gelatinase A (matrix metalloproteinase-2) requires Ca2+ for fibronectin and heparin binding. Binding properties of recombinant gelatinase A C domain to extracellular matrix and basement membrane components. J. Biol. Chem. 272, 7473–7481.

    PubMed  CAS  Google Scholar 

  29. Rawlings N. D. and Barrett A. J. (1995) Evolutionary families of metallopeptidases. Meth Enzymol. 248, 183–228.

    PubMed  CAS  Google Scholar 

  30. Bode W. (1995) A helping hand for collagenases: the hemopexin-like domain. Structure 2, 527–530.

    Google Scholar 

  31. Springman E. B., Angleton E. L., Birkedal-Hansen H., and Van Wart H. E. (1990) Multiple modes of activation of latent human fibroblast collagenase: evidence for the role of a Cys73 active-site zinc complex in latency and a “cysteine switch” mechanism for activation. Proc. Natl. Acad. Sci. USA 87, 364–368.

    PubMed  CAS  Google Scholar 

  32. Leahy D. J., Aukhil I., and Erickson H. P. (1996) 2.0 A crystal structure of a four-domain segment of human fibronectin encompassing the RGD loop and synergy region. Cell 84, 155–164.

    PubMed  CAS  Google Scholar 

  33. Pei D. and Weiss S. J. (1995) Furin-dependent intracellular activation of the human stromelysin-3 zymogen. Nature 375, 244–247.

    PubMed  CAS  Google Scholar 

  34. Windsor L. J., Bodden M. K., Birkedal-Hansen B., Engler J. A., and Birkedal-Hansen H. (1994) Mutational analysis of residues in and around the active site of human fibroblast-type collagenase. J. Biol. Chem. 269, 26,201–26,207.

    PubMed  CAS  Google Scholar 

  35. Murphy G., Nguyen Q., Cockett M. I., Atkinson S. J., Allan J. A., Knight C. G., Willenbrock F., and Docherty A. J. P. (1994) Assessment of the role of the fibronectin-like domain of gelatinase A by analysis of a deletion mutant. . Biol. Chem. 269, 6632–6636.

    CAS  Google Scholar 

  36. Owens R. J. and Baralle F. E. (1986) Mapping the collagen-binding site of human fibronectin by expression in Escherichia coli. EMBO. J. 5, 2825–2830.

    PubMed  CAS  Google Scholar 

  37. Litvinovich S. V., Strickland D. K., Medved L. V., and Ingham K. C. (1991) Domain structure and interactions of the type I and type II modules in the gelatinbinding region of fibronectin. All six modules are independently folded. J. Mol. Biol. 217, 563–575.

    PubMed  CAS  Google Scholar 

  38. Skorstengaard K., Holtet T. L., Etzerodt M., and Thogersen H. C. (1994) Collagen-binding recombinant fibronectin fragments containing type II domains. FEBS Lett. 343, 47–50.

    PubMed  CAS  Google Scholar 

  39. Overall C. M., Lowne D., Wells G., Burel S., McCullouch C. A. G., and Clements J. M. (1999) Cloning, CHO Cell Expression, and Activation of Rat Collagenase-2 (MMP-8). J. Dent. Res. 78, (IADR Abstracts), 458.

    Google Scholar 

  40. Shirley B. A., Stanswsens P., Hahn U., and Pace N. C. (1992) Contribution of hydrogen bonding to the conformational stability of ribonuclease T1. Biochemistry 31, 725–732.

    PubMed  CAS  Google Scholar 

  41. Maurus R., Overall C.M., Bogumil,R., Luo Y.L., Mauk G., Smith M.,and Brayer G. (1997) A myoglobin variant with a polar substitution in a conserved hydrophobic cluster in the heme binding pocket. Biochim. Biophys. Acta 1341, 1–13.

    PubMed  CAS  Google Scholar 

  42. Butler G. S., Butler M. J., Atkinson S. J., Will H., Tamura T., van Westrum S. S., Crabbe T., Clements J., d’Ortho M.-P., and Murphy G. The TIMP-2 membrane type I metalloproteinase “receptor” regulates the concentration and efficient activation of progelatinase A (1998) J. Biol. Chem. 273, 871–880.

    PubMed  CAS  Google Scholar 

  43. Overall C. M., King A. E., Sam D. K., Ong A. D., Lau T. T. Y., Wallon U. M., DeClerck Y. A., and Atherstone J. (1999) Identification of the tissue inhibitor of metalloproteinases-2 (TIMP-2) binding site on the hemopexin carboxyl domain of human gelatinase A by site-directed mutagenesis. The hierarchical role in binding TIMP-2 of the unique cationic clusters of hemopexin modules III and IV. J. Biol. Chem. 274, 4421–4429.

    PubMed  CAS  Google Scholar 

  44. Bode W., Gomis-Ruth F.-X., and Stockler W. (1993) Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the lsmetzincinsrs. FEBS Lett. 331, 134–140.

    PubMed  CAS  Google Scholar 

  45. Pourmotabbed T., Solomon T. L., Hasty K. A., and Mainardi C. L. (1994) Characteristics of 92 kDa type IV collagenase/gelatinase produced by granulocytic leukemia cells: structure, expression of cDNA in E. coli and enzymic properties. Biochim. Biophys. Acta. 1204, 97–107.

    PubMed  CAS  Google Scholar 

  46. Fields B. B., Van Wart H. E., and Birkedal-Hansen H. (1987) Sequence specificity of human skin fibroblast collagenase. Evidence for the role of collagen structure in determining the collagenase cleavage site. J. Biol. Chem. 262, 6221–6226.

    PubMed  CAS  Google Scholar 

  47. Netzel-Arnett S., Fields G. B., Birkedal-Hansen H., and Van Wart H. E. (1991) Sequence specificities of human fibroblast and neutrophil collagenases. J. Biol. Chem. 266, 6747–6755.

    PubMed  CAS  Google Scholar 

  48. Netzel-Arnett S., Sang Q. X., Moore W. G., Navre M., Birkedal-Hansen H., and Van Wart H. E. (1993) Comparative sequence specificities of human 72-and 92-kDa gelatinases (type IV collagenases) and PUMP (matrilysin). Biochemistry 32, 6427–6432.

    PubMed  CAS  Google Scholar 

  49. McGeeham G. M., Bickett D. M., Green M., Kassel D., Wiseman J. S., and Berman J. (1994) Characterization of the peptide substrate specificities of interstitial collagenase and 92-kDa gelatinase. Implications for substrate optimization. J. Biol. Chem. 269, 32,814–32,820.

    Google Scholar 

  50. Welch A. R., Holman C. M., Huber M., Brenner M. C., Browner M. F., and Van Wart H.E. (1996) Understanding the P1’ specificity of the matrix metalloproteinases: effect of S1’ pocket mutations in matrilysin and stromelysin-1. Biochemistry 35, 10,103–10,109.

    PubMed  CAS  Google Scholar 

  51. Borkakoti N., Winkler F. K., Williams D. H., D’Arcy A., Broadhurst M. J., Brown P. A., Johnson W. H., and Murray E. J. (1994) Structure of human fibroblast collagenase complexed with an inhibitor. Nature Struct. Biol. 1, 106–110.

    PubMed  CAS  Google Scholar 

  52. Lovejoy B., Cleasby A., Hassell A. M., Longley K., Luther M. A., Weigl D., McGeehan G., McElroy A. B., Drewry D., Lambert M. H., and Jordan S. R. (1994) Structure of the catalytic domain of fibroblast collagenase complexed with an inhibitor. Science 263, 375–377.

    PubMed  CAS  Google Scholar 

  53. Stams T., Spurlino J. C., Smith D. L., Wahl R. C., Ho T. F., Qoronfleh M. W., Banks T. M., and Rubin B. (1994) Structure of human neutrophil collagenase reveals large S1’ specificity pocket. Nature Struct. Biol. 1, 119–123.

    PubMed  CAS  Google Scholar 

  54. Bode W., Reinemer A., Huber R., Kleine T., Schnierer S., and Tschesche H. (1994) The X-ray crystal structure of the catalytic domain of human neutrophil collagenase inhibited by a substrate analogue reveals the essentials for catalysis and specificity. EMBO J. 13, 1263–1269.

    PubMed  CAS  Google Scholar 

  55. Massova I., Fridman R., and Mobashery S. (1997) Structural insights into the catalytic domains of human matrix metalloproteinaase-2 and human matrix metalloproteinase-9: Implications for substrate specificites. J. Mol. Model. 3, 17–30.

    CAS  Google Scholar 

  56. Docherty A. J. P. (2000) In Inhibitors of Matrix Metalloproteinases in Development and Disease (Edwards D., Hawkes S., and Kokha R., eds.) Gordon and Breach, Amsterdam, Holland, in press.

    Google Scholar 

  57. Welgus H. G., Jeffrey J. J., Stricklin G. P., Roswit W. T., and Eisen A. Z. (1980) Characteristics of the action of human skin fibroblast collagenase on fibrillar collagen. J. Biol. Chem. 255, 6806–6813.

    PubMed  CAS  Google Scholar 

  58. Allan J. A., Docherty A. J., Barker P. J., Huskisson N. S., Reymolds J. J., and Murphy G. (1995) Binding of gelatinases A and B to type-I collagen and other matrix components. Biochem. J. 309, 299–306.

    PubMed  CAS  Google Scholar 

  59. Steffensen B., Bigg H. F., and Overall C. M. (1998) The involvement of the fibronectin type II-like modules of human gelatinase A in cell surface localization and activation. J. Biol. Chem. 273, 20,622–20,628.

    PubMed  CAS  Google Scholar 

  60. Olsen M. W., Toth M., Gervasi D. C., Sado Y., Ninomiya Y., and Fridman R. (1998) High affinity binding of latent matrix metalloproteinase-9 to the alpha 2 (IV) chain of collagen IV. J. Biol. Chem. 273, 10,672–10,681.

    Google Scholar 

  61. Basset P., Bellocq J. P., Wolf C., Stoll I., Hutin P., Limacher J. M., Podhajcer O. L., Chenard M. P., Rio M. C., and Chambon P. (1990) A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature 348, 699–704.

    PubMed  CAS  Google Scholar 

  62. Clark I. M. and Cawston T. E. (1989) Fragments of human fibroblast collagenase. Purification and characterization. Biochem. J. 263, 201–206.

    PubMed  CAS  Google Scholar 

  63. Windsor L. J., Birkedal-Hansen H., Birkedal-Hansen B., and Engler J. A. (1991) An internal cysteine plays a role in the maintenance of the latency of human fibroblast collagenase. Biochem. 30, 641–647.

    CAS  Google Scholar 

  64. Murphy G., Allan J. A., Willenbrock F., Cockett M. I., O’Connell J. P., and Docherty A. J. P. (1992) The role of the C-terminal domain in collagenase and stromelysin specificity. J. Biol. Chem. 267, 9612–9618.

    PubMed  CAS  Google Scholar 

  65. Hirose T., Patterson C., Pourmotabbed T., Mainardi C. L., and Hasty K. A. (1993) Structure-function relationship of human neutrophil collagenase: identification of regions responsible for substrate specificity and general proteinase activity. Proc. Natl. Acad. Sci. USA 90, 2569–2573.

    PubMed  CAS  Google Scholar 

  66. Knauper V., Cowell S., Smith B., López-Otin C., O’Shea M., Morris H., Zardi L., and Murphy G. (1997) The role of the C-terminal domain of human collagenase-3 (MMP-13) in the activation of procollagenase-3, substrate specificity, and tissue inhibitor of metalloproteinase interaction. J. Biol. Chem. 272, 7608–7616.

    PubMed  CAS  Google Scholar 

  67. Murphy G., Willenbrock F., Ward R. V., Cockett M. I., Eaton D., and Docherty A. J. P. (1992) The C-terminal domain of 72 kDa gelatinase A is not required for catalysis, but is essential for membrane activation and modulates interactions with tissue inhibitors of metalloproteinases. Biochem. J. 283, 637–641.

    PubMed  CAS  Google Scholar 

  68. Ingham K. C., Brew S. A., and Migliorini M. M. (1989) Further localization of the gelatin-binding determinants within fibronectin. Active fragments devoid of type II homologous repeat modules. J. Biol. Chem. 264, 16,977–16,980.

    PubMed  CAS  Google Scholar 

  69. Banyai L., Trexler M., Koncz S., Gyenes M., Sipos G., and Patthy L. (1990) The collagen-binding site of type-II units of bovine seminal fluid protein PDC-109 and fibronectin. Eur. J. Biochem. 193, 801–806.

    PubMed  CAS  Google Scholar 

  70. Banyai L. and Patthy L. (1991) Evidence for the involvement of type II domains in collagen binding by 72 kDa type IV procollagenase. FEBS Lett. 282, 23–25.

    PubMed  CAS  Google Scholar 

  71. Banyai L., Tordai H., and Patthy L. (1994) The gelatin-binding site of human 72 kDa type IV collagenase (gelatinase A). Biochem. J. 298, 403–407.

    PubMed  CAS  Google Scholar 

  72. Collier E. E., Krasnov P. A., Strongin A. Y., Birkedal-Hansen H., and Goldberg G. I. (1992) Alanine scanning mutagenesis and functional analysis of the fibronectin-like collagen-binding domain from human 92-kDa type IV collagenase. J. Biol. Chem. 267, 6776–6781.

    PubMed  CAS  Google Scholar 

  73. Abbey R., Steffensen B., and Overall C. M. (1999) Differential substrate binding to the fibronectin type II modules of human gelatinase A. Evidence for cooperative binding sites (In preparation).

    Google Scholar 

  74. Shipley J. M., Doyle G. A. R., Fliszar C. J., Ye Q,-Z., Johnson L. J., Shapiro S. D., Welgus H. G., and Senior R. M. (1996) The structural basis for the elastinolytic activity of the 92-kDa and 72-kDa gelatinases. Role of the fibronectin type II-like repeats. J. Biol. Chem. 271, 4335–4341.

    PubMed  CAS  Google Scholar 

  75. O’Farrell T. J. and Pourmotabbed T. (1998) The fibronectin-like domain is required for the type V and XI collagenolytic activity of gelatinase B. Arch. Biochem. Biophys. 354, 24–30.

    PubMed  Google Scholar 

  76. Ye Q. Z., Johnson L. L., Yu A. E., and Hupe D. (1995) Reconstructed 19 kDa catalytic domain of gelatinase A is an active proteinase. Biochemistry 34, 4702–4708.

    PubMed  CAS  Google Scholar 

  77. Banyai L., Tordai H., and Patthy L. (1996) Structure and domain-domain interactions of the gelatin binding site of human 72-kilodalton type IV collagenase (gelatinase A, matrix metalloproteinase 2). J. Biol. Chem. 271, 12,003–12,008.

    PubMed  CAS  Google Scholar 

  78. Constantine K. L., Madrid M., Banyai L., Trexler M., Patthy L., and Llinas M. (1992) Refined solution structure and ligand-binding properties of PDC-109 domain b. A collagen-binding type II domain. J. Mol. Biol. 223, 281–298.

    PubMed  CAS  Google Scholar 

  79. Sticht H., Pickford A. R., Potts J. R., and Campbell I. D. (1998) Solution structure of the glycosylated second type 2 module of fibronectin. J. Mol. Biol. 276, 177–187.

    PubMed  CAS  Google Scholar 

  80. Pickford A. R., Potts J. R., Bright J. R., Phan I., and Campbell I. D. (1997) Solution structure of a type 2 module from fibronectin: Implications for the structure and function of the gelatin-binding domain. Structure 5, 359–370.

    PubMed  CAS  Google Scholar 

  81. Brooks P. C., Stromblad S., Sanders L. C., von Schalscha T. L., Aimes R. T., Stetler-Stevenson W. G., Quigley J. P., and Cheresh D. A. (1996) Localizatiòn of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell 85, 683–693.

    PubMed  CAS  Google Scholar 

  82. Bigg H. F., Shi Y. E., Liu Y. E., Steffensen B., and Overall C. M. (1997) Specific, high affinity binding of tissue inhibitor of metalloproteinases-4 (TIMP-4) to the COOH-terminal hemopexin-like domain of human gelatinase A. TIMP-4 binds progelatinase A and the COOH-terminal domain in a similar manner to TIMP-2. J. Biol. Chem. 272, 15,496–15,500.

    PubMed  CAS  Google Scholar 

  83. O’Connell J. P., Willenbrock F., Docherty A. J. P., Eaton D., and Murphy G. (1994) Analysis of the role of the COOH-terminal domain in the activation, proteolytic activity, and tissue inhibitor of metalloproteinase interactions of gelatinase B. J. Biol. Chem. 269, 14,967–14,973.

    PubMed  Google Scholar 

  84. Stetler-Stevenson W. G., Krutzsch H. C., and Liotta L. A. (1989) Tissue inhibitor of metalloproteinase (TIMP-2). A new member of the metalloproteinase inhibitor family. J. Biol. Chem. 264, 17,374–17,378.

    PubMed  CAS  Google Scholar 

  85. Howard E. W. and Banda M. J. (1991) Binding of tissue inhibitor of metalloproteinases 2 to two distinct sites on human 72-kDa gelatinase. Identification of a stabilization site. J. Biol. Chem. 266, 17,972–17,977.

    PubMed  CAS  Google Scholar 

  86. Koklitis P. A., Murphy G., Sutton C., Angal S. (1991) Purification of recombinant human prostromelysin. Studies on heat activation to give high-Mr and lowMr active forms, and a comparison of recombinant with natural stromelysin activities. Biochem. J. 276, 217–221.

    PubMed  CAS  Google Scholar 

  87. Marcy A. I., Eiberger L. L., Harrison R., Chan H. K., Hutchinson N. I., Hagmann W. K., Cameron P. M., Boulton D. A., and Hermes J. D. (1991) Human fibroblast stromelysin catalytic domain: expression, purification, and characterization of a C-terminally truncated form. Biochemistry 30, 6476–6483.

    PubMed  CAS  Google Scholar 

  88. Nomura K., Shimizu T., Kinoh H., Sendai Y., Inomata M., and Suzuki N. (1997) Sea urchin hatching enzyme (envelysin): cDNA cloning and deprivation of protein substrate specificity by autolytic degradation. Biochemistry 36, 7225–7238.

    PubMed  CAS  Google Scholar 

  89. Sodek J. and Overall C. M. (1992) Matrix metalloproteinases in periodontal tissue remodelling. Matrix Supplement 1, 352–362.

    CAS  Google Scholar 

  90. Aimes R. T. and Quigley J. P. (1995) Matrix metalloproteinase-2 is an interstitial collagenase. Inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type I collagen generating the specific 3/4-and 1/4-length fragments. J. Biol. Chem. 270, 5872–5876.

    PubMed  CAS  Google Scholar 

  91. Highberger J. H., Corbett C., and Gross J. (1979) Isolation and characterization of a peptide containing the site of cleavage of the chick skin collagen alpha 1 [I] chain by animal collagenases. Biochem. Biophys. Res. Comm. 89, 202–208.

    PubMed  CAS  Google Scholar 

  92. Welgus H. G., Jeffrey J. J., and Eisen A. Z. (1981) Human Skin fibroblast collagenase. Assessment of activation energy and deuterium isotope effect with collagenous substrates. J. Biol. Chem. 256, 9516–9521.

    PubMed  CAS  Google Scholar 

  93. De Souza S. J., Pereira H. M., Jacchieri S., and Brentani R. R. (1996) Collagen/collagenase interaction: Does the enzyme mimic the conformation of its own substrate? FASEB J. 10, 927–930.

    PubMed  CAS  Google Scholar 

  94. De Souza S. J. and Brentani R. (1992) Collagen binding site in collagenase can be determined using the concept of sense-antisense peptide interactions. J. Biol. Chem. 267, 13,763–13,767.

    PubMed  CAS  Google Scholar 

  95. Sanchez-López R., Alexander C. M., Behrendtsen O., Breathnach R., and Werb Z. (1993) Role of zinc-binding and hemopexin domain encoded sequences in the substrate specificity of collagenase and stromelysin-2 as revealed by chimeric proteins. J. Biol. Chem. 268, 7238–7247.

    PubMed  Google Scholar 

  96. Knauper V., Docherty A. J. P., Smith B., Tschesche H., andMurphy, G. (1997) Analysis of the contribution of the hinge region of human neutrophil collagenase (HNC, MMP-8) to stability and collagenolytic activity by alanine scanning mutagenesis. FEBS Letters 405, 60–64.

    PubMed  CAS  Google Scholar 

  97. Overall C. M. and Sodek J. (1990) Concanavalin A produces a matrix-degradative phenotype in human fibroblasts. Induction and endogenous activation of collagenase, 72-kDa gelatinase, and Pump-1 is accompanied by the suppression of the tissue inhibitor of matrix metalloproteinases. J. Biol. Chem. 265, 21,141–21,151.

    PubMed  CAS  Google Scholar 

  98. Strongin A. Y., Collier I., Bannikow G., Marmer B. L., Grant G. A., and Goldberg G. I. (1995) Mechanism of cell surface activation of 72-kDa type IV collagenase. J. Biol. Chem. 270, 5331–5338.

    PubMed  CAS  Google Scholar 

  99. Will H., Atkinson S. J., Butler G. S., Smith B., and Murphy G. (1996) The soluble catalytic domain of membrane type I matrix metalloproteinase cleaves the propeptide of progelatinase A and initiates autoproteolytic activation. Regulation by TIMP-2 and TIMP-3. J. Biol. Chem. 271, 17,119–17,123.

    PubMed  CAS  Google Scholar 

  100. Crabbe T., Joannou C., and Docherty A. J. P. (1993) Human progelatinase A can be activated by autolysis at a rate that is concentration-dependent and enhanced by heparin bound to the C-terminal domain. Eur. J. Biochem. 218, 431–438.

    PubMed  CAS  Google Scholar 

  101. Overall C. M., Wallon U. M. W., McQuibban G. A., Tam E., Bigg H. F., Morrison C. M., DeClerck Y. A., King A., and Overall C. M. (2000) Domain binding studies of gelatinase A activation by membrane type-1 matrix metalloproteinase and TIMP-2. Analysis of the potential interactions of the 43-KDa form of MT1-MMP (submitted).

    Google Scholar 

  102. Gilles C., Polette M., Seiki M., Birembaut P., and Thompson E. W. (1997)Implication of collagen type I-induced membrane-type 1-matrix metalloproteinase expression and matrix metalloproteinase-2 activation in the metastatic progression of breast carcinoma. Lab Invest. 76, 651–660.

    PubMed  CAS  Google Scholar 

  103. Haas T. L., Davis S. J., and Madri J. A. (1998) Three-dimensional type I collagen lattices induce coordinate expression of matrix metalloproteinases MT1-MMP and MMP-2 in microvascular endothelial cells. J. Biol. Chem. 273, 3604–3610.

    PubMed  CAS  Google Scholar 

  104. Seftor R. E. B., Seftor E. A., Stetlet-Stevenson W. G., and Hendrix M. J. C. (1993) The 72 kDa type IV collagenase is modulated via differential expression of αvß3 and α5ß1 integrins during human melanoma cell invasion. Cancer Res. 53, 3411–3415.

    PubMed  CAS  Google Scholar 

  105. Lohi J. Lehti K., Westermarck J., Kahari V., and Keski-Oja J. Regulation of membrane-type matrix metalloproteinase-1 expression by growth factors and phorbol 12-myristate 13-acetate. Eur. J. Biochem. 239, 239–247.

    Google Scholar 

  106. Lehti K., Lohi J., Valtanen H., and Keski-Oja J. Proteolytic processing of membrane-type-1 mtrix metalloproteinase is associated with gelatinase A activation at the cell surface. Biochem. J. (1998) 334, 345–353.

    PubMed  CAS  Google Scholar 

  107. Overall C. M., Wrana J. L., and Sodek J. (1989) Independent Regulation of Collagenase, 72-kDa Progelatinase, and Metalloendoproteinase Inhibitor Expression in Human Fibroblasts by Transforming Growth Factor-β. J. Biol. Chem. 264, 1860–1869.

    PubMed  CAS  Google Scholar 

  108. Overall C. M., Wrana J. L., and Sodek J. (1991) Transcriptional and Post-transcriptional Regulation of 72-kDa Gelatinase/Type IV Collagenase by Transforming Growth Factor-1 in Human Fibroblasts. Comparisons with Collagenase and Tissue Inhibitor of Matrix Metalloproteinase Gene Expression. J. Biol. Chem. 266, 14,064–14,071.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Overall, C.M. (2001). Matrix MetaIIoproteinase Substrate Binding Domains, Modules and Exosites. In: Clark, I.M. (eds) Matrix Metalloproteinase Protocols. Methods in Molecular Biology™, vol 151. Humana Press. https://doi.org/10.1385/1-59259-046-2:079

Download citation

  • DOI: https://doi.org/10.1385/1-59259-046-2:079

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-733-5

  • Online ISBN: 978-1-59259-046-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics