Antibodies to MMP-Cleaved Aggrecan

  • Amanda J. Fosang
  • Karena Last
  • David C. Jackson
  • Lorena Brown
Part of the Methods in Molecular Biology™ book series (MIMB, volume 151)


The matrix metalloproteinases (MMPs) have a pivotal role in both normal and pathological turnover of the extracellular matrix. Whereas MMP protein can easily be detected by immunolocalization or Western blot analysis, the determination of whether or not an MMP is active and acting on a particular substrate has been more difficult. If the primary sequence and unique cleavage sites within the substrate are known, one means of unambiguously identifying MMP activity is to use antibodies with a unique specificity for antigenic determinants on the newly created N- or C- termini of the degradation products. By definition, these “neoepitope” antibodies recognize a terminal sequence exclusively and do not recognize the same sequence of amino acids located internally as part of the intact protein. This approach has been extremely successful for detecting MMP-derived fragments of aggrecan (the large cartilage proteoglycan) (1, 2, 3, 4, 5) and collagen (6), since aggrecan and collagen are abundant in cartilage matrix, and their neoepitopes are correspondingly abundant. Often MMPs are not the only pro-teinases involved in tissue remodeling and in this situation neoepitope antibodies allow fragments derived from MMPs and other proteinases to be distinguished from each other and compared. In cartilage, aggrecan degradation is mediated by both MMPs, and aggrecanase (7,8) which are members of the ADAMTS family of proteinases (9). The production and use of neoepitope antibodies for investigating cartilage catabolism was first described by Hughes et al. (10). Thereafter neoepitope antibodies were quickly recognized as ideal tools for resolving the products of separate degradative pathways involved in aggrecanolysis.


High Performance Liquid Chromatography Ascites Fluid Culture Fluid Booster Injection Fmoc Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hughes C. E., Caterson B., Fosang A. J., Roughley P. J., and Mort J. S. (1995) Monoclonal antibodies that specifically recognize neo-epitope sequences generated by “aggrecanase” and matrix metalloproteinase cleavage of aggrecan: application to catabolism in situ and in vitro. Biochem. J. 305, 799–804.PubMedGoogle Scholar
  2. 2.
    Lark M. W., Williams H., Hoerrner L. A., Weidner J., Ayala J. M., Harper C. F., Christen A., Olszewski J., Konteatis Z., Webber R., and Mumford R. A. (1995) Quantification of a matrix metalloproteinase-generated aggrecan G1 fragment using monospecific anti-peptide serum. Biochem. J. 307, 245–252.PubMedGoogle Scholar
  3. 3.
    Sztrolovics R., Alini M., Roughley P. J., and Mort J. S. (1997) Aggrecan degradation in human intervertebral disc and articular cartilage. Biochem. J. 326, 235–241.PubMedGoogle Scholar
  4. 4.
    Fosang A. J., Last K., Gardiner P., Jackson D. C., and Brown L. (1995) Development of a cleavage site-specific monoclonal antibody for detecting metal-loproteinase-derived aggrecan fragments: detection of fragments in human synovial fluids. Biochem. J. 310, 337–343.PubMedGoogle Scholar
  5. 5.
    Büttner F. H., Hughes C. E., Margerie D., Lichte A., Tschesche H., Caterson B., and Bartnik E. (1998) Membrane type 1 matrix metalloproteinase (MT1-MMP) cleaves the recombinant aggrecan substrate rAgg1mut at the ‘aggrecanase’ and the MMP sites. Characterization of MT1-MMP catabolic activities on the interglobular domain of aggrecan. Biochem. J. 333, 1–65.Google Scholar
  6. 6.
    Billinghurst R. C., Dahlberg L., Ionescu M., Reiner A., Bourne R., Ror-abeck C., Mitchell P., Hambor J., Diekmann O., Tschesche H., Chen J., Van Wart H., and Poole A. R. (1997) Enhanced cleavage of type II collagen by colla-genases in osteoarthritic articular cartilage. J. Clin. Invest. 99, 1534–1545.PubMedCrossRefGoogle Scholar
  7. 7.
    Tortorella M. D., Burn T. C., Pratta M. A., Abbaszade I., Hollis J. M., Liu R., Rosenfeld S. A., Copeland R. A., Decicco C. P., Wynn R., Rockwell A., Yang F., Duke J. L., Solomon K., George H., Bruckner R., Nagase H., Itoh Y., Ellis D. M., Ross H., Wiswall B. H., Murphy K., Hillman M. C. J., Hollis G. F., Newton R. C., Magolda R. L., Trzaskos J. M., and Arner E. C. (1999) Purification and cloning of aggrecanase-1: A member of the ADAMTS family of proteins. Science 284, 1664–1666.PubMedCrossRefGoogle Scholar
  8. 8.
    Abbaszade I., Liu R. Q., Yang F., Rosenfeld S. A., Ross O. H., Link J. R., Ellis D. M., Tortorella M. D., Pratta M. A., Hollis J. M., Wynn R., Duke J. L., George H. J. Hillman M. C. J., Murphy K., Wiswall B. H., Copeland R. A., Decicco C. P., Bruckner R., Nagase H., Itoh Y., Newton R. C., Magolda R. L., Trzaskos J. M., Hollis G. F., Arner E. C., and Burn T. C. (1999) Cloning and characterization of ADAMTS11, an aggrecanase from the ADAMTS family. J. Biol. Chem. 274, 23,443–23,450.PubMedCrossRefGoogle Scholar
  9. 9.
    Tang B. L. and Hong W. (1999) ADAMTS: a novel family of proteases with an ADAM protease domain and thrombospondin repeats. FEBS LETT. 445, 223–225.PubMedCrossRefGoogle Scholar
  10. 10.
    Hughes C., Caterson B., White R. J., Roughley P. J., and Mort J. S. (1992) Monoclonal antibodies recognizing protease-generated neoepitopes from cartilage proteoglycan degradation. J. Biol. Chem. 267, 16,011–16,014.PubMedGoogle Scholar
  11. 11.
    Jameson B. A. and Wolf H. (1988) The antigenic index: a novel algorithm for predicting antigenic determination. CABIOS 4, 181–186.PubMedGoogle Scholar
  12. 12.
    Lark M. W., Gordy J. T., Weidner J. R., Ayala J., Kimura J. H., Williams H. R., Mumford R. A., Flannery C. R., Carlson S. S., Iwata M., and Sandy J. D. (1995) Cell-mediated catabolism of aggrecan. Evidence that cleavage at the “aggrecanaserd site (Glu373-Ala374) is a primary event in proteolysis of the interglobular domain. J. Biol. Chem. 270, 2550–2556.PubMedCrossRefGoogle Scholar
  13. 13.
    Hutton S., Hayward J., Maciewicz R. A., and Bayliss M. (1996) Age-related and zonal distribution of aggrecanase activity in normal and osteoarthritic human articular cartilage. Trans. Orthop. Res. Soc. 21, 150.Google Scholar
  14. 14.
    Chambers M. G., Cox L. J., Chong L., Maciewicz R., Bayliss M. T., and Mason R. M. (1998) Localization of neoepitopes for “aggrecanase” and general metalloproteinases in normal and osteoarthritic murine articular cartilage. Trans. Orthop. Res. Soc 23, 436.Google Scholar
  15. 15.
    Mercuri F. A., Doege K. J., Arner E. C., Pratta M. A., Last K., and Fosang A. J. (1999) Recombinant human aggrecan G1-G2 exhibits native binding properties and substrates specificity for matrix metalloproteinases and aggrecanase. J. Biol. Chem. 274, 32,387–32,395.PubMedCrossRefGoogle Scholar
  16. 16.
    Arner E. C., Pratta M. A., Newton R. C., Trzaskos J., Magolda R., and Tortorella M. D. (1998) Comparison of cleavage efficiency of aggrecanase and stromelysin for the aggrecan core protein. Trans. Orthop. Res. Soc. 23, 922.Google Scholar
  17. 17.
    Billington C. J., Clark I. M., and Cawston T. E. (1998) An aggrecan-degrading activity associated with chondrocyte membranes. Biochem. J. 336, 1–212.Google Scholar
  18. 18.
    Wade J. D., Bedford J., Sheppard R. C., and Tregear G. W. (1991) DBU as an N alpha-deprotecting reagent for the fluorenylmethoxycarbonyl group in continuous flow solid-phase peptide synthesis. Pept. Res. 4, 194–199.PubMedGoogle Scholar
  19. 19.
    Pennington M. W. and Dunn B. M. (eds.) (1994) Methods in Molecular Biology, vol. 35: Peptide Synthesis Protocols. Humana Press Totowa, NJ.Google Scholar
  20. 20.
    Bernatowicz M. S. and Matsueda G. R. (1986) Preparation of peptide-protein immunogens using N-succinimidyl bromoacetate as a heterobifunctional cross-linking reagent. Anal. Biochem. 155, 95–102.PubMedCrossRefGoogle Scholar
  21. 21.
    Goding J. W. (1986) Monoclonal antibodies: Principles and Practice. Academic Press Sydney, Australia.Google Scholar
  22. 22.
    Hurn B. A. and Chantler S. M. (1980) Production of reagent antibodies. Methods Enzymol. 70, 104–142.PubMedCrossRefGoogle Scholar
  23. 23.
    Fosang A. J. and Hardingham T. E. (1989) Isolation of the N-terminal globular domains from cartilage proteoglycans. Identification of G2 domain and its lack of interaction with hyaluronate and link protein. Biochem. J. 261, 801–809.PubMedGoogle Scholar
  24. 24.
    Hughes C. E., Büttner F. H., Eidenmuller B., Caterson B., and Bartnik E. (1997) Utilization of a recombinant substrate rAgg1 to study the biochemical properties of aggrecanase in cell culture systems. J. Biol. Chem. 272, 20,269–20,274.PubMedCrossRefGoogle Scholar
  25. 25.
    Doege K. J., Sasaki M., Kimura T., and Yamada Y. (1991) Complete coding sequence and deduced primary structure of the human cartilage large aggregating proteoglycan, aggrecan. Human specific repeats and additional alternatively spliced forms. J. Biol. Chem. 266, 894–902.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Amanda J. Fosang
    • 1
  • Karena Last
    • 1
  • David C. Jackson
    • 2
  • Lorena Brown
    • 2
  1. 1.Department of PaediatricsUniversity of Melbourne, Orthopaedic Research Unit, Royal Children’s HospitalParkvilleAustralia
  2. 2.Department of Microbiology and ImmunologyUniversity of MelbourneParkvilleAustralia

Personalised recommendations