Models for Gain-of-Function and Loss-of-Function of MMPs

Transgenic and Gene Targeted Mice
  • Lisa M. Coussens
  • Steven D. Shapiro
  • Paul D. Soloway
  • Zena Werb
Part of the Methods in Molecular Biology™ book series (MIMB, volume 151)


The most powerful approach for studying gene function in an intact animal is to regulate the levels of the gene product and thereby see gains-of-function or losses-of-function. The occasional mutation in the genes for the matrix metalloproteinases or their inhibitors, or polymorphism in their promoters that alter transcriptional regulation has been identified in humans and has helped define the function of these proteins. With ever increasing sophistication in producing targeted mutations in mice, there are now available null mutation in most of the known genes for the matrix metalloproteinases and their inhibitors. A number of mouse strains with ectopic expression of normal and mutant proteins have also been made. These transgenic mice are giving us new insights into the processes of development and pathogenesis.


Mammary Gland Null Mouse Neutrophil Elastase Lewis Lung Cell Bullous Pemphigoid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Vu T. H., Shipley J. M., Bergers G., Berger J. E., Helms J. A., Hanahan D., Shapiro S. D., Senior R. M., and Werb Z. (1998) MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93, 411–422.PubMedCrossRefGoogle Scholar
  2. 2.
    Lelongt B., Trugnan G., Murphy G., and Ronco P. M. (1997) Matrix metalloproteinases MMP2 and MMP9 are produced in early stages of kidney morphogenesis but only MMP9 is required for renal organogenesis in vitro. J. Cell. Biol. 136, 13,663–13,673.CrossRefGoogle Scholar
  3. 3.
    Minor J. H., Betsuyaku T., Shipley J. M., and Senior R. M. (1997) Renal function is normal in gelatinase B deficient mice. Mol. Biol. Cell 8, 403a.Google Scholar
  4. 4.
    Mohan R., Rinehart W. B., Bargagna-Mohan P., and Finis M. E. (1998) Gelatinase B/lacZ transgenic mice, a model for mapping gelatinase B expression during developmental and injury-related tissue remodeling. J. Biol. Chem. 273, 25,903–25,914.PubMedCrossRefGoogle Scholar
  5. 5.
    Balbin M., Fueyo A., Knauper V., Pendas A. M., Lopez J. M., Jimenez M. G., Murphy G., and López-Otín C. (1998) Collagenase 2 (MMP-8) expression in murine tissue-remodeling processes. Analysis of its potential role in postpartum involution of the uterus. J. Biol. Chem. 273, 23,959–23,968.PubMedCrossRefGoogle Scholar
  6. 6.
    Liu X., Wu H., Byrne M., Jeffrey J., Krane S., and Jaenisch R. (1995) A targeted mutation at the known collagenase cleavage site in mouse type I collagen impairs tissue remodeling. J. Cell. Biol. 130, 227–237.PubMedCrossRefGoogle Scholar
  7. 7.
    Lund L. R., J. Romer J., Thomasset N., Solberg H., Pyke C., Bissell M. J., Dano K., and Werb Z. (1996) Two distinct phases of apoptosis in mammary gland involution: Proteinase-independent and-dependent pathways. Development 122, 181–193.PubMedGoogle Scholar
  8. 8.
    Sympson C. J., Talhouk R. S., Alexander C. M., Chin J. R., Clift S. M., Bissell M. J., and Werb Z. (1994) Targeted expression of stromelysin-1 in mammary gland provides evidence for a role of proteinases in branching morphogenesis and the requirement for an intact basement membrane for tissue-specific gene expression. J. Cell Biol. 125, 681–693. [Published correction appears in J. Cell Biol. 132,753(1996)].PubMedCrossRefGoogle Scholar
  9. 9.
    Alexander C. M., Howard E. W., Bissell M. J., and Werb Z. (1996). Rescue of mammary epithelial cell apoptosis and entactin degradation by a TIMP-1 transGene J. Cell Biol. 135, 1669–1677.PubMedCrossRefGoogle Scholar
  10. 10.
    Thomasset N., Lochter A., Sympson C. J., Lund L. R., Williams D. R., Behrendtsen O., Werb Z., and Bissell M. J. (1998) Expression of autoactivated stromelysin-1 in mammary glands of transgenic mice leads to a reactive stroma during early Development. Am. J. Path. 153, 457–467.PubMedCrossRefGoogle Scholar
  11. 11.
  12. 12.
    Pilcher B. K., Dumin J. A., Sudbeck B. D., Krane S. M., Welgus H. G., and Parks W. C. (1997) The activity of collagenase-1 is required for keratinocyte migration on a type I collagen matrix. J. Cell. Biol. 137, 1445–1457.PubMedCrossRefGoogle Scholar
  13. 13.
    Dunsmore S. E., Saarialh-Kere U. K., Roby J. D., Wilson C. L., Matrisian L. M., Welgus H. G., and Parks W. C. (1998) Matrilysin expression and function in airway epithelium. J. Clin. Invest. 102, 1321–1331.PubMedCrossRefGoogle Scholar
  14. 14.
    Libby P. (1995) Molecular bases of the acute coronary syndromes. Circulation 91, 2844–2850.PubMedGoogle Scholar
  15. 15.
    Thompson R. W., Mertens R. A., Liao S., Holmes D. R., Mecham R. P., Welgus H. G., and Parks W. C. (1995) Production and localization of 92-kD gelatinase in abdominal aortic aneurysms: an elastolytic metalloproteinase expressed by aneurysm-infiltrating macrophages. J. Clin. Invest. 96, 318–326.PubMedCrossRefGoogle Scholar
  16. 16.
    Breslow J. (1996) Mouse models of atherosclerosis. Science 272, 685–688.PubMedCrossRefGoogle Scholar
  17. 17.
    Carmeleit P., Moons L., Lijnen R., Crawley J., Tipping P., Drew A., Eeckhout Y., Shapiro S. D., Lupu F., and Collen D. (1997) Plasmin predisposes to atherosclerotic aneurysm formation by activation of matrix metalloproteinases. Nature Genetics 17, 439–444.CrossRefGoogle Scholar
  18. 18.
    Shipley J. M., Wesselschmidt R. L., Kobayashi D. K., Ley T. J., and Shapiro S. D. (1996) Metalloelastase is required for macrophage-mediated proteolysis and matrix invasion in mice. Proc. Natl. Acad. Sci. 93, 3942–3946.PubMedCrossRefGoogle Scholar
  19. 19.
    Ye S., Eriksson P., Hamsten A., Kurkinen M., Humphries S. E., and Henney A. M. (1996) Progression of coronary atherosclerosis is associated with a common genetic variant of the human stromelysin-1 promoter which results in reduced gene expression. J. Biol. Chem. 271, 13,055–13,060.PubMedCrossRefGoogle Scholar
  20. 20.
    Wilson C. L. and Matrisian L. M. (1996) Matrilysin: An epithelial matrix metalloproteinase with potentially novel functions. Int. J. Biochem. Cell. Biol. 28, 123–136.PubMedCrossRefGoogle Scholar
  21. 21.
    Saarialho-Kere U. K., Crouch E. C., and Parks W. C. (1995) Matrix metalloproteinase matrilysin is constitutively expressed in adult human exocrine epithelium. J. Invest. Dermatol. 105, 190–196.PubMedCrossRefGoogle Scholar
  22. 22.
    Wilson C. L., Heppner K. J., Rudolph L. A., and Matrisian L. M. (1995) The metalloproteinase matrilysin is preferentially expressed by epithelial cells in a tissue-restricted pattern in the mouse. Mol. Biol. Cell 6, 851–869.PubMedGoogle Scholar
  23. 23.
    Witty J. P., McDonnell S., Newell K. J., Cannon P., Navre M., Tressler R. J., and Matrisian L. M. (1994) Modulation of matrilysin levels in colon carcinoma cell lines affects tumorgenicity in vivo. Cancer Res. 54, 4805–4812.PubMedGoogle Scholar
  24. 24.
    Wilson C. L., Heppner K. J., Labosky P. A., Hogan B. L., and Matrisian L. M. (1997) Intestinal tumorigenesis is suppressed in mice lacking the metalloproteinase matrilysin. Proc. Nat. Acad. Sci. 94, 1402–1407.PubMedCrossRefGoogle Scholar
  25. 25.
    Rudolph-Owen L. A. and Matrisian L. (1998) Matrix metalloproteinases in remodeling of the normal and neoplastic mammary gland. J. Mammary Gland Neoplasia 3, 177–189.CrossRefGoogle Scholar
  26. 26.
    Rudolph-Owen L. A., Cannon P., and Matrisian L. (1998) Overexpression of the matrix metalloproteinase matrilysin results in premature mammary gland differentiation and male infertility. Mol. Biol. Cell. 9, 421–435.PubMedGoogle Scholar
  27. 27.
    Lawson N. D., Khana-Gupta A., and Berliner N. (1998) Isolation and characterization of the cDNA for mouse neutrophil collagenase: Demonstration of shared negative regulatory pathways for neutrophil secondary granule protein gene expression. Blood 91, 2517–2524.PubMedGoogle Scholar
  28. 28.
    Coussens L. M. and Werb Z. (1996) Matrix metalloproteinases and the development of cancer. Chem. and Biol. 3, 895–904.CrossRefGoogle Scholar
  29. 29.
    Murray G. I., Duncan M. E., O’Neil P., Melvin W. T., and Fothergill J. E. (1996) Matrix metalloproteinase-1 is associated with poor prognosis in colorectal cancer. Nature Med. 2, 461–461.PubMedCrossRefGoogle Scholar
  30. 30.
    D’Armiento J., DiColandrea T., Dalal S. S., Okada Y., Huang M. T., Conney A. H., and Chada K. (1995) Collagenase expression in transgenic mouse skin causes hyperkeratosis and acanthosis and increases susceptibility to tumorigenesis. Mol. Cell. Biol. 15, 5732–5739.PubMedGoogle Scholar
  31. 31.
    Coussens L. M., Raymond W. W., Bergers G., et al. (1999) Inflammatory mast cells up-regulate angiogenesis during squamous epthelial carcinogenesis. Genes Dev. 13, 1382–1397PubMedCrossRefGoogle Scholar
  32. 32.
    Alexander C. M., Hansell E. J., Behrendtsen O., Flannery M. L., Kishnani N. S., Hawkes S. P., and Werb Z. (1996) Expression and function of matrix metalloproteinases and their inhibitors at the maternal-embryonic boundary during mouse embryo implantation. Development 122, 1723–1736.PubMedGoogle Scholar
  33. 33.
    Sympson C. J., Talhouk R. S., Alexander C. M., Chin J. R., Clift S. M., and Bissell M. J. (1994) Targeted expression of stromelysin-1 in mammary gland provides for a role of proteinases in branching morphogenesis and the requirement for an intact basement membrane for tissue-specific gene expression. J. Cell. Biol. 125, 681–693.PubMedCrossRefGoogle Scholar
  34. 34.
    Lochter A., Srebrow A., Sympson C. J., Terracio N., Werb Z., and Bissell M. J. (1997) Misregulation of stromelysin-1 expression in mouse mammary tumor cells accompanies acquisition of stromelysin-1-dependent invasive properties. J. Biol. Chem. 272, 5007–5015.PubMedCrossRefGoogle Scholar
  35. 35.
    Sternlicht M. D., Lochter A., Bissell M. J., and Werb Z. (1997) Ectopic expression of an autoactivating form of stromelysin-1 promotes mammary tumor formation in transgenic mice and in mice injected with mammary epi-thelial cells containing an induciible transgene. Breast Cancer Res. Treat. 46, 28.Google Scholar
  36. 36.
    Sympson C. J., Talhouk R. S., Bissell M. J., and Werb Z. (1995) The role of metalloproteinases and their inhibitors in regulating mammary epithelial morphology and function in vivo. Persp. Drug Discovery Design 2, 401–411.CrossRefGoogle Scholar
  37. 37.
    Lochter A., Srebrow A., Sympson C. J. Terracio N., Werb Z., and Bissell M.J. (1997) Misregulation of stromelysin-1 expression in mouse mammary tumor cells accompanies acquisition of stromelysin-1-dependent invasive properties. J. Biol. Chem. 272, 5007–5015.PubMedCrossRefGoogle Scholar
  38. 38.
    Basset P., Bellocq J. P., Wolf C., Stoll I., Hutin P., Limacher J. M., Podhajcer O. L., Chenard M. P., Rio M. C., and Chambon P. (1990) A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature 348, 699–704.PubMedCrossRefGoogle Scholar
  39. 39.
    Ahmad A., Hanby A., Dublin E., Poulsom R., Smith P., Barnes D., Rubens R., Anglard P., and Hart I. (1998) Stromelysin 3: an independent prognostic factor for relapse-free survival in node-positive breast cancer and demonstration of novel breast carcinoma cell expression. Am. J. Path. 152, 721–728.PubMedGoogle Scholar
  40. 40.
    Masson R., Lefebvre O., Noel A., El Fahime M., Chenared M.-P., Wendling C., Kebers F., LeMeur M., Dierich A., Foidart J-M., Basset P.,and Rio M.-C. (1998) In vivo evidence that the stromelysin-3 metalloproteinase contributes in a paracrine manner to epithelial cell malignancy. J. Cell. Biol. 140, 1535–1541.PubMedCrossRefGoogle Scholar
  41. 41.
    Brooks P. C., Stromblad S., Sanders L. C., von Schalscha T. L., Aimes R. T., Stetler-Stevenson W. G., Quigley J. P., and Cheresh D. A. (1996) Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin aVb3. Cell 85, 683–693.PubMedCrossRefGoogle Scholar
  42. 42.
    Brooks P. C., Silletti S., von Schalscha T. L., Friedlander M., and Cheresh D. A. (1998) Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity. Cell 92, 391–400.PubMedCrossRefGoogle Scholar
  43. 43.
    Itoh T., Tanioka M., Yoshida H., Yoshioka T., Nishimoto H., and Itohara S.(1998) Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res. 58, 1048–1051.PubMedGoogle Scholar
  44. 44.
    Liu Z., Shipley J. M., Vu T. H., Zhou X., Diaz L. A., Werb Z., and Senior R. M. (1998) Gelatinase B-deficient mice are resistant to experimental bullous pemphigoid. J. Exp. Med. 188, 475–482.PubMedCrossRefGoogle Scholar
  45. 45.
    O’Reilly M. S., Holmgren L., Shing Y., Chen C., Rosenthal R. A., Moses,M., Lane W. S., Cao Y., Sage E. H., and Folkman J. (1994) A novel angiogenesis inhibitor which mediates the suppression of metastasis by a Lewis Lung carcinoma. Cell 79, 315–328.PubMedCrossRefGoogle Scholar
  46. 46.
    Dong Z., Kumar R., Yang X., and Fidler I. J. (1997) Macrophage-derived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell 88, 801–810.PubMedCrossRefGoogle Scholar
  47. 47.
    Patterson B. C. and Sang Q. A. (1997) Angiostatin-converting enzyme activities of human matrilyisin (MMP-7) and gelatinase B/type IV collagenase (MMP-9). J. Biol. Chem. 272, 28,823–28,825.PubMedCrossRefGoogle Scholar
  48. 48.
    Cao Y., Chen A., An S. A., Ji R. W., Davidson D., and Llinas M. (1997) Kringle 5 of plasminogen is a novel inhibitor of endothelial cell growth. J. Biol.Chem. 272, 22,924–22,928.PubMedCrossRefGoogle Scholar
  49. 49.
    Stathakis P., Fitzgerald M., Matthias L. J., Chesterman C. N., and Hogg P. J. (1997) Generation of angiostatin by reduction and proteolysis of plasmin: catalysis by a plasmin reductase secreted by cultured cells. J. Biol. Chem. 272, 20,641–20,645.PubMedCrossRefGoogle Scholar
  50. 50.
    Gately S., Twardowski S. P., Stack M. S., Patrick M., Boggio L., Cundiff D.L., Schnaper H. W., Madison L., Volpert O., Bouck N., Enghild J., Kwaan H. C., and Soff G. (1996) Human prostate carcinoma cells express enzymatic activity that converts human plasminogen to the angiogenesisis inhibitor, angiostatin. Cancer Res. 56, 4887–4890.PubMedGoogle Scholar
  51. 51.
    O’Reilly M., Boehm T., Shing Y., Fukai N., Vasios G., Lane W. S., Flynn E., Birkhead J. R., Olsen B. R., and Folkman J. (1997) Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell. 88, 277–285.PubMedCrossRefGoogle Scholar
  52. 52.
    Boehm T., Folkman J., Browder T., and O’Reilly M. S. (1997) Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390, 404–407.PubMedCrossRefGoogle Scholar
  53. 53.
    Brown P. D. (1997) Matrix metalloproteinase inhibitors in the treatment of cancer. Med. Oncol. 14, 1–10.PubMedCrossRefGoogle Scholar
  54. 54.
    Anderson I. C., Shipp M. A., Docherty A. P., and Teicher B.A. (1996) Combination therapy including a gelatinase inhibitor and cytotoxic agent reduces local invasion and metastasis of murine Lewis lung carcinoma. Cancer Res. 56, 710–715.Google Scholar
  55. 55.
    Werb Z. (1997) ECM and cell surface proteolysis: Regulating cellular ecology.Cell 91, 439–442.PubMedCrossRefGoogle Scholar
  56. 56.
    Wernert N. (1997) The multiple roles of tumor stroma. Virchows Arch. 430, 433–443.PubMedCrossRefGoogle Scholar
  57. 57.
    Lukashev M. E. and Werb Z. (1998) ECM signalling: orchestrating cell behaviour and misbehaviour. Trends in Cell Biol. 8, 437–441.CrossRefGoogle Scholar
  58. 58.
    D’Armiento J., Dalal S. S., Okada Y., Berg R. A., and Chada K. (1992) Collagenase expression in the lungs of transgenic mice causes pulmonary emphysema. Cell 71, 955–961.PubMedCrossRefGoogle Scholar
  59. 59.
    Hautamaki R. D., Kobayashi D. K., Senior R. M., and Shapiro S. D. (1997) Macrophage elastase is required for cigarette smoke-induced emphysema in mice. Science 277, 2002–2004.PubMedCrossRefGoogle Scholar
  60. 60.
    Senior R. M., Griffin G. L., and Mecham R. P. (1980) Chemotactic activity of elastin-derived peptides. J. Clin. Invest. 66, 859–862.PubMedCrossRefGoogle Scholar
  61. 61.
    Hunninghake G. W., Davidson J. M., Rennard S., Szapiel S., Gadek J. E., and Crystal R. G. (1981) Elastin fragments attract macrophage precursors to diseased sites in pulmonary emphysema. Science 212, 925–927.PubMedCrossRefGoogle Scholar
  62. 62.
    Wang M., Qin X., Mudgett J. S., Ferguson T. A., Senior R. M., and Welgus H. G. (1998) Matrix metalloproteinase deficiencies affect contact hypersensitivity: stromelysin-1 deficiency prevents the response and gelatinase B deficiency prolongs the response (Submitted for publication).Google Scholar
  63. 63.
    Flenniken A. M. and Williams B. R. (1990) Developmental expression of the endogenous TIMP gene and a TIMP-lacZ fusion gene in transgenic mice. GenesDev. 4, 1094-106.Google Scholar
  64. 64.
    Kawabe T. T., Rea T. J., Flenniken A. M., Williams B. R., Groppi V. E., and Buhl A. E. (1991) Localization of TIMP in cycling mouse hair. Development 111, 877–879.PubMedGoogle Scholar
  65. 65.
    Flenniken A. M., Campbell C. E., and Williams B. R. (1992) Regulation of TIMP gene expression in cell culture and during mouse embryogenesis. Matrix Suppl. 1, 275–280.PubMedGoogle Scholar
  66. 66.
    Nomura S., Hogan B. L., Wills A. J., Heath J. K., and Edwards D. R., (1989) Developmental expression of tissue inhibitor of metalloproteinase (TIMP) RNA. Development 105, 575–583.PubMedGoogle Scholar
  67. 67.
    Zeng, Y., Rosborough R. C., Li, Y., Gupta A. R., and Bennett J. (1998) Temporal and spatial regulation of gene expression mediated by the promoter for the human tissue inhibitor of metalloproteinases-3 (TIMP-3)-encoding Gene. Dev.Dyn. 211, 228–237.PubMedCrossRefGoogle Scholar
  68. 68.
    Alexander C. M., Hansell E. J., Behrendtsen O., Flannery M. L., Kishnani N. S., Hawkes S. P., and Werb Z. (1996) Expression and function of matrix metalloproteinases and their inhibitors at the maternal-embryonic boundary during mouse embryo implantation. Development 122, 1723-36.Google Scholar
  69. 69.
    Apte S. S., Hayashi K. Seldin M. F., Mattei M. G., Hayashi M., and Olsen B. R.(1994) Gene Encoding a Novel Murine Tissue Inhibitor Of Metalloproteinases (Timp), Timp-3, Is Expressed In Developing Mouse Epithelia, Cartilage, and Muscle, and Is Located On Mouse Chromosome 10. Dev. Dynamics 200, 177–197.Google Scholar
  70. 70.
    Hurskainen T., Hoyhtya M., Tuuttila A., Oikarinen A., and Autio-Har-mainen H. (1996) mRNA expressions of TIMP-1,-2, and-3 and 92-KD type IV collagenase in early human placenta and decidual membrane as studied by in situ hybridization. J. Histochem. CytoChem. 44, 1379–1388.PubMedGoogle Scholar
  71. 71.
    Leco K. J., Khokha R., Pavloff N., Hawkes S. P., and Edwards D. R. (1994) Tissue Inhibitor Of Metalloproteinases-3 (Timp-3) Is an Extracellular Matrix-Associated Protein With a Distinctive Pattern Of Expression In Mouse Cells and Tissues. J. Biol. Chem. 269, 9352–9360.PubMedGoogle Scholar
  72. 72.
    Silbiger S. M., Jacobsen V. L., Cupples R. L., and Koski R. A. (1994) Cloning Of Cdnas Encoding Human Timp-3, a Novel Member Of the Tissue Inhibitor Of Metalloproteinase Family. Gene 141, 293–297.PubMedCrossRefGoogle Scholar
  73. 73.
    Wu I. and Moses M. A. (1996) Cloning and expression of the cDNA encoding rat tissue inhibitor of metalloproteinase 3 (TIMP-3). Gene 168, 243–246.PubMedCrossRefGoogle Scholar
  74. 74.
    Zinyk D. L., Mercer E. H., Harris E., Anderson D. J., and Joyner A. L. (1998) Fate mapping of the mouse midbrain-hindbrain constriction using a site-specific recombination system. Curr. Biol. 8, 665–668.PubMedCrossRefGoogle Scholar
  75. 75.
    Brenner C. A., Adler R. R., Rappolee D. A., Pedersen R. A., and Werb Z. (1989) Genes for extracellular-matrix-degrading metalloproteinases and their inhibitor, TIMP, are expressed during early mammalian development. Genes Dev. 3, 848–859.PubMedCrossRefGoogle Scholar
  76. 76.
    Werb Z., Ashkenas J., MacAuley A., and Wiesen J. F. (1996) Extracellular matrix remodeling as a regulator of stromal-epithelial interactions during mammary gland development, involution and carcinogenesis. Braz. J. Med. Biol. Res. 29, 1087–109PubMedGoogle Scholar
  77. 77.
    Alexander C. M., Howard E. W., Bissell M. J., and Werb Z. (1996) Rescue of mammary epithelial cell apoptosis and entactin degradation by a tissue inhibitor of metalloproteinases-1 transGene. J. Cell Biol. 135, 1669–1677.PubMedCrossRefGoogle Scholar
  78. 78.
    Boudreau N., Sympson C. J., Werb Z., and Bissell M. J. (1995) Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science 267, 891–893.PubMedCrossRefGoogle Scholar
  79. 79.
    Frisch S. M. and Francis H. (1994) Disruption of Epithelial Cell-Matrix Interactions Induces Apoptosis. J. Cell Biol. 124, 619–626.PubMedCrossRefGoogle Scholar
  80. 80.
    Cardone M. H., Salvesen G. S., Widmann C., Johnson G., and Frisch S. M. (1997) The Regulation Of Anoikis-Mekk-1 Activation Requires Cleavage By Caspases. Cell 90, 315–323.PubMedCrossRefGoogle Scholar
  81. 81.
    Martin D. C., Ruther U., Sanchez-Sweatman O. H., Orr F. W., and Khokha R. (1996) Inhibition of S V40 T antigen-induced hepatocellular carcinoma in TIMP-1 transgenic mice. OncoGene 13, 569–576.PubMedGoogle Scholar
  82. 82.
    Ruther U., Woodroofe C. Fattori E., and Ciliberto G. (1993) Inducible formation of liver tumors in transgenic mice. OncoGene 8, 87–93.PubMedGoogle Scholar
  83. 83.
    Kruger A., Fata J. E., and Khokha R. (1997) Altered tumor growth and metastasis of a T-cell lymphoma in Timp-1 transgenic mice. Blood 90, 1993–2000.PubMedGoogle Scholar
  84. 84.
    Kruger A., Sanchez-Sweatman O. H., Martin D. C., Fata J. E., Ho A. T., Orr F. W., Ruther U., and Khokha R. (1998) Host TIMP-1 overexpression confers resistance to experimental brain metastasis of a fibrosarcoma cell line. OncoGene 16, 2419–2423.PubMedCrossRefGoogle Scholar
  85. 85.
    Goss K. J., Brown P. D., and Matrisian L. M. (1998) Differing effects of endogenous and synthetic inhibitors of metalloproteinases on intestinal tumorigenesis. Int. J. Cancer 78, 629–635.PubMedCrossRefGoogle Scholar
  86. 86.
    Soloway P. D., Alexander C. M., Werb Z., and Jaenisch R. (1996) Targeted mutagenesis of Timp-1 reveals that lung tumor invasion is influenced by Timp-1 genotype of the tumor but not by that of the host. OncoGene 13, 2307–2314.PubMedGoogle Scholar
  87. 87.
    Mignatti P., Robbins E., and Rifkin D. B. (1986) Tumor invasion through the human amniotic membrane: requirement for a proteinase cascade. Cell 47, 487–498.PubMedCrossRefGoogle Scholar
  88. 88.
    Moses M. A. and Langer R. (1991) A metalloproteinase inhibitor as an inhibitor of neovascularization. J. Cell BioChem. 47, 230–235.PubMedCrossRefGoogle Scholar
  89. 89.
    Fowlkes J. L., Enghild J. J., Suzuki K., and Nagase H. (1994) Matrix metalloproteinases degrade insulin-like growth factor-binding protein-3 in dermal fibroblast cultures. J. Biol. Chem. 269, 25,742–25,746.PubMedGoogle Scholar
  90. 90.
    Thrailkill K. M., Quarles L. D., Nagase H., Suzuki K., Serra D. M., and Fowlkes J. L. (1995) Characterization of insulin-like growth factor-binding protein 5-degrading proteases produced throughout murine osteoblast differentia-tion. Endocrinology 136, 3527–3533.PubMedCrossRefGoogle Scholar
  91. 91.
    Gasson J. C., Golde D. W., Kaufman S. E., Westbrook C. A., Hewick R. M., Kaufman R. J., Wong G. G., Temple P. A., Leary A. C., and Brown E. L. (1985) Molecular characterization and expression of the gene encoding human erythroid-potentiating activity. Nature 315, 768–771.PubMedCrossRefGoogle Scholar
  92. 92.
    Hayakawa T., Yamashita K., Tanzawa K., Uchijima E., and Iwata K. (1992) Growth-promoting activity of tissue inhibitor of metalloproteinases-1 (TIMP-1) for a wide range of cells. A possible new growth factor in serum. Febs Lett. 298, 29–32.PubMedCrossRefGoogle Scholar
  93. 93.
    Stetler-Stevenson W. G., Bersch N., and Golde D. W. (1992) Tissue inhibitor of metalloproteinase-2 (TIMP-2) has erythroid-potentiating activity. Febs Lett. 296, 231–234.PubMedCrossRefGoogle Scholar
  94. 94.
    Matsumoto H., Ishibashi Y., Ohtaki T., Hasegawa Y., Koyama C., and Inoue K. (1993) Newly established murine pituitary folliculo-stellate-like cell line (TtT/GF) secretes potent pituitary glandular cell survival factors, one of which corresponds to metalloproteinase inhibitor. Biochem. Biophys. Res. Comm. 194, 909–915.PubMedCrossRefGoogle Scholar
  95. 95.
    Satoh T., Kobayashi K., Yamashita S., Kikuchi M., Sendai Y., and Hoshi H. (1994) Tissue inhibitor of metalloproteinases (TIMP-1) produced by granulosa and oviduct cells enhances in vitro development of bovine embryo. Biol. Repro., 50, 835–844.CrossRefGoogle Scholar
  96. 96.
    Nemeth J. A. and Goolsby C. L. (1993) TIMP-2 ata growth-stimulatory protein from SV40-transformed human fibroblasts. Exp. Cell Res. 207, 376–382.PubMedCrossRefGoogle Scholar
  97. 97.
    Nothnick W. B., Soloway P. D., and Curry T. E. (1998) Pattern of mRNA Timp-1 Gene Biol. Repro. 59, 364–370.CrossRefGoogle Scholar
  98. 98.
    Murphy A. N., Unsworth E. J., and Stetler-Stevenson W. G. (1993) Tissue inhibitor of metalloproteinases-2 inhibits bFGF-induced human microvascular endothelial cell proliferation. J. Cell Physiol. 157, 351–358.PubMedCrossRefGoogle Scholar
  99. 99.
    Boujrad N., Ogwuegbu S. O., Garnier M., Lee C. H., Martin B. M., and Papadopoulos V. (1995) Identification of a stimulator of steroid hormone synthesis isolated from testis. Science 268, 1609–1612.PubMedCrossRefGoogle Scholar
  100. 100.
    Nothnick W. B., Soloway P., and Curry T. E. (1997) Assessment of the role of tissue inhibitor of metalloproteinase-1 (Timp-1) during the periovulatory period in female mice lacking a functional Timp-1 Gene. Biol. Repro. 56, 1181–1188.CrossRefGoogle Scholar
  101. 101.
    Yoon B. J., Osiewicz K., Weaver K., Potter W., Johnston B., Preston M. J., Jaenisch R., Pier G. B., Kubes P., Dougherty T., and Soloway P. D. TIMP-1-regulates innate immune responses to infection (Manuscript submitted).Google Scholar
  102. 102.
    Osiewicz K., McGarry M., and Soloway P. D. Hyper-resistance to infection in TIMP-1-deficient mice is neutrophil-dependent but not immune cell autonomous. Ann. NYAcad. Sci. (In press).Google Scholar
  103. 103.
    Okamoto N., Tobe T., Hackett S. F., Ozaki H., Vinores M. A., LaRochelle W.,Zack D. J., and Campochiaro P. A. (1997) Transgenic mice with increased expression of vascular endothelial growth factor in the retina: a new model of intraretinal and subretinal neovascularization. Am. J. Pathol. 151, 281–291.PubMedGoogle Scholar
  104. 104.
    Tobe T., Yamada H., Yamada E., Okamoto N., Zack D. J., Werb Z., Soloway P. D., and Campochiaro P. A. Increase in the Ratio of Tissue Inhibitor of Metalloproteinases-1 to Metalloproteinases Promotes Vascular Endothelial Growth Factor-Induced Neovascularization in the Retina (Manucscript Submitted).Google Scholar
  105. 105.
    Strongin A. Y., Collier I., Bannikov G., Marmer B. L., Grant G. A., and Goldberg G. I. (1995) Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J. Biol. Chem. 270, 5331–5338.PubMedCrossRefGoogle Scholar
  106. 106.
    Will H., Atkinson S. J., Butler G. S., Smith B., and Murphy G. (1996) The soluble catalytic domain of membrane type 1 matrix metalloproteinase cleaves the propeptide of progelatinase A and initiates autoproteolytic activation. Regulation by TIMP-2 and TIMP-3. J. Biol. Chem. 271, 17,119–17,123.PubMedCrossRefGoogle Scholar
  107. 107.
    Wang Z. and Soloway P. D. TIMP-1 and TIMP-2 perform different functions in vivo. Ann. NY Acad. Sci. In press.Google Scholar
  108. 108.
    Holmbeck K., Bianco P., Caterina J., et al. (1999) MT1-MMP-deficient mice develop dwarfism, oseopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell 99, 81–92.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Lisa M. Coussens
    • 1
  • Steven D. Shapiro
    • 2
  • Paul D. Soloway
    • 3
  • Zena Werb
    • 4
  1. 1.Hormone Research InstituteUniversity of CaliforniaSan Francisco
  2. 2.Department of PediatricsWashington University School of MedicineSt. Louis
  3. 3.Department of Molecular and Cellular BiologyRoswell Park Cancer InstituteBuffalo
  4. 4.Department of AnatomyUniversity of CaliforniaSan Francisco

Personalised recommendations