Skip to main content

Investigating the Higher Order Structure of Proteins

Hydrogen Exchange, Proteolytic Fragmentation, and Mass Spectrometry

  • Protocol
Mass Spectrometry of Proteins and Peptides

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 146))

Abstract

It has been apparent for some years that the structures of proteins are dynamic rather than static. For some proteins, dynamics is essential to function (e.g., refs. 17). These structural changes have been detected for more than 30 yr by observing hydrogen exchange between peptide amide hydrogens and solvent containing the hydrogen isotopes tritium or deuterium (810). Although tritium is no longer used extensively for this purpose, deuterium is widely used in hydrogen exchange studies, especially in multidimensional nuclear magnetic resonance (NMR), in which amide hydrogen signals disappear on deuteration. Since deuterium weighs 1 Dalton more than protium, hydrogen exchange in proteins can also be detected by mass spectrometry. This approach is complementary to NMR in some respects and clearly advantageous in others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nimmesgern E., Fox T., Fleming M. A., and Thomson J. A. (1996) Conformational changes and stabilization of inosine 5′-monophosphate dehydrogenase associated with ligand binding and inhibition by mycophenolic acid. J. Biol. Chem. 271, 19,421-19,427.

    Google Scholar 

  2. Creighton T. E. (1992) Protein Folding. W. H. Freeman, New York.

    Google Scholar 

  3. Wilson I. A. and Stanfield R. L. (1994) Antibody-antigen interactions: New structures and new conformational changes. Curr. Opin. Struct. Biol. 4, 857–867.

    Article  PubMed  CAS  Google Scholar 

  4. Spolar R. S. and Record M. T., Jr. (1994) Coupling of local folding to sitespecific binding of proteins to DNA. Science 263, 777–784.

    Article  PubMed  CAS  Google Scholar 

  5. Kriwacki R. W., Hengst L., Tennent L., Reed S. I., and Wright P. E. (1996) Structural studies of p21Waf1/Cip1/Sdi1 in the free and Cdk-2 bound state: conformational disorder mediates binding diversity. Proc. Natl. Acad. Sci. USA 93, 11,504-11,509.

    Article  Google Scholar 

  6. Shen F., Triezenberg S. J., Hensley P., Porter D., and Knutson J. (1996) Transcriptional activation domain of the herpesvirus protein VP16 becomes conformationally constrained upon interaction with basal transcription factors. J. Biol. Chem. 271, 4827–4837.

    Article  PubMed  CAS  Google Scholar 

  7. Alexandrescu A. T., Abeygunawardana C., and Shortle D. (1994) Structure and dynamics of a denatured 131-residue fragment of Staphlococcal nuclease: a heteronuclear study. Biochemistry 33, 1063–1072.

    Article  PubMed  CAS  Google Scholar 

  8. Hvidt A. and Nielsen S. O. (1966) Hydrogen exchange in proteins. Adv. Protein Chem. 21, 287–385.

    Article  PubMed  CAS  Google Scholar 

  9. Woodward C., Simon I., and Tuchsen E. (1982) Hydrogen exchange and the dynamic structure of proteins. Mol. Cell. Biochem. 48, 135–160.

    Article  PubMed  CAS  Google Scholar 

  10. Englander S. W. and Kallenbach N. R. (1984) Hydrogen exchange and structural dynamics of proteins and nucleic acids. Q. Rev. Biophys. 16, 521–655.

    Article  Google Scholar 

  11. Smith D. L., Deng Y., and Zhang Z. (1997) Probing the non-covalent structure of proteins by amide hydrogen exchange and mass spectrometry. J. Mass Spectrom. 32, 135–146.

    Article  PubMed  CAS  Google Scholar 

  12. Katta V. and Chait B. T. (1991) Conformational changes in proteins probed by hydrogen-exchange electrospray-ionization mass spectrometry. Rapid Commun. Mass Spectrom. 5, 214–217.

    Article  PubMed  CAS  Google Scholar 

  13. Wang F. and Tang X.-J. (1996) Conformational heterogeneity and stability of apomyoglobin studied by hydrogen-deuterium exchange and electrospray ionization mass spectrometry. Biochemistry 35, 4069–4078.

    Article  PubMed  CAS  Google Scholar 

  14. Ramanathan R., Gross M. L., Zielinski W. L., and Layloff T. P. (1997) Monitoring recombinant protein drugs: a study of insulin by H/D exchange and electrospray ionization mass spectrometry.Anal. Chem. 69, 5142–5145.

    Article  PubMed  CAS  Google Scholar 

  15. Miranker A., Robinson C. V., Radford S. E., Aplin R. T., and Dobson C. M. (1993) Detection of transient protein folding populations by mass spectrometry. Science 262, 896–900.

    Article  PubMed  CAS  Google Scholar 

  16. Engen J. R., Smithgall T. E., Gmeiner W. H., and Smith D. L. (1997) Identification and localization of slow, natural, cooperative unfolding in the hematopoietic cell kinase SH3 domain by amide hydrogen exchange and mass spectrometry. Biochemistry 36, 14,384-14,391.

    Article  Google Scholar 

  17. Kragelund B. B., Knudsen J., and Poulsen F. M. (1995) Local perturbations by ligand binding of hydrogen deuterium exchange kinetics in a four-helix bundle protein, acyl coenzyme A binding protein (ACBP). J. Mol. Biol 250, 695–706.

    Article  PubMed  CAS  Google Scholar 

  18. Anderegg R. J. and Wagner D. S. (1995) Mass spectrometric characterization of a protein ligand interaction. J. Am. Chem. Soc. 117, 1374–1377.

    Article  CAS  Google Scholar 

  19. Gross M., Robinson C. V., Mayhew H., Hartl F. U., and Radford S. E. (1996) Significant hydrogen exchange protection in GroEL-bound DHFR is maintained during iterative rounds of substrate cycling. Protein Sci. 5, 2506–2513.

    Article  PubMed  CAS  Google Scholar 

  20. Robinson C. V., Gross M., Eyles S. J., Ewbank J. J., Mayhew M., Hartl F. U., et al. (1994) Conformation of GroEL-bound alpha-lactalbumin probed by mass spectrometry. Nature 372, 646–651.

    Article  PubMed  CAS  Google Scholar 

  21. Zhang Z. and Smith D. L. (1993) Determination of amide hydrogen exchange by mass spectrometry: a new tool for protein structure elucidation. Protein Sci. 2, 522–531.

    Article  PubMed  CAS  Google Scholar 

  22. Rosa J. J. and Richards F. M. (1979) An experimental procedure for increasing the structural resolution of chemical hydrogen-exchange measurements on proteins: application to ribonuclease S peptide. J. Mol. Biol. 133, 399–416.

    Article  PubMed  CAS  Google Scholar 

  23. Rosa J. J. and Richards F. M. (1981) Hydrogen exchange from identified regions of the S-protein component of ribonuclease as a function of temperature, pH, and the binding of S-peptide. J. Mol. Biol. 145, 835–851.

    Article  PubMed  CAS  Google Scholar 

  24. Englander J. J., Rogero J. R., and Englander S. W. (1985) Protein hydrogen exchange studied by the fragment separation method. Anal. Biochem. 147, 234–244.

    Article  PubMed  CAS  Google Scholar 

  25. Dharmasiri K. and Smith D. L. (1997) Regional stability changes in oxidized and reduced cytochrome c located by hydrogen exchange and mass spectrometry. J. Am. Soc. Mass. Spectrom. 8, 1039–1045.

    Article  CAS  Google Scholar 

  26. Remigy H., Jaquinod M., Petillot Y., Gagnon J., Cheng H., Xia B., et al. (1997) Probing the influence of mutation on the stability of a ferredoxin by mass spectrometry. J. Protein Chem. 16, 527–532.

    Article  PubMed  CAS  Google Scholar 

  27. Jaquinod M., Guy P., Halgand F., Caffrey M., Fitch J., Cusanovich M., et al. (1996) Stability of Rhodobacter capsulatus ferrocytochrome c2 wild-type and site-directed mutants using hydrogen/deuterium exchange monitored by electrospray ionization mass spectrometry. FEBS Lett. 380, 44–48.

    Article  PubMed  CAS  Google Scholar 

  28. Guy P., Remigy H., Jaquinod M., Bersch B., Blanchard L., Dolla A., et al. (1996) Study of the new stability properties induced by amino acid replacement of tyrosine 64 in cytochrome C553 from Desulfobibrio vulgaris Hildenborough using electrospray ionization mass spectrometry. Biochem. Biophys. Res. Commun. 218, 97–103.

    Article  PubMed  CAS  Google Scholar 

  29. Guy P., Jaquinod M., Remigy H., Andrieu J. P., Gagnon J., Bersch B., et al. (1996) New conformational properties induced by the replacement of Tyr-64 in Desulfovibrio vulgaris Hildenborough ferricytochrome d553 using isotopic] exchange monitored by mass spectrometry. FEBS Lett. 395, 53–57.

    Article  PubMed  CAS  Google Scholar 

  30. Wang F., Scapin G., Blanchard J. S., and Angeletti R. H. (1998) Substrate binding and conformational changes of Clostridium glutamicum diaminopimelate dehydrogenase revealed by hydrogen/deuterium, exchange and electrospray mass spectrometry. Protein Sci. 7, 293–299.

    Article  PubMed  CAS  Google Scholar 

  31. Wang F., Blanchard J. S., and Tang X. J. (1997) Hydrogen exchange/electrospray ionization mass spectrometry studies of substrate and inhibitor binding and conformational changes of Escherichia coli dihydrodipicolinate reductase. Biochemistry 36, 3755–3759.

    Article  PubMed  CAS  Google Scholar 

  32. Ohguro H., Palczewski K., Walsh K. A., and Johnson R. S. (1994) Topographic study of arrestin using differential chemical modifications and hydrogen/deuterium exchange. Protein Sci. 3, 2428–2434.

    Article  PubMed  CAS  Google Scholar 

  33. Johnson R. S. and Walsh K. A. (1994) Mass spectrometric measurement of protein amide hydrogen exchange rates of apo-and holo-myoglobin. Protein Sci. 3, 2411–2418.

    Article  PubMed  CAS  Google Scholar 

  34. Resing K. A. and Ahn N. G. (1998) Deuterium exchange mass spectrometry as a probe of protein kinase activation. Analysis of wild-type and constitutively active mutants of MAP kinase kinase-1. Biochemistry 37, 463–475.

    Article  PubMed  CAS  Google Scholar 

  35. Dharmasiri K. and Smith D. L. (1996) Mass spectrometric determination of isotopic exchange rates of amide hydrogens located on the surfaces of proteins. Anal. Chem. 68, 2340–2344.

    Article  PubMed  CAS  Google Scholar 

  36. Yang H., and Smith D. L. (1997) Kinetics of cytochrome c folding examined by hydrogen exchange and mass spectrometry. Biochemistry 36, 14,992–14,999.

    Article  PubMed  CAS  Google Scholar 

  37. Zhang Z., Post C. B., and Smith D. L. (1996) Amide hydrogen exchange determined by mass spectrometry: application to rabbit muscle aldolase. Biochemistry 35, 779–791.

    Article  PubMed  CAS  Google Scholar 

  38. Liu Y. and Smith D. L. (1994) Probing high order structure of proteins by fastatom bombardment mass spectrometry. J. Am. Soc. Mass Spectrom. 5, 19–28.

    Article  CAS  Google Scholar 

  39. Deng Y. and Smith D. L. (1998) Identification of unfolding domains in large proteins by their unfolding rates. Biochemistry 37, 6256–6262.

    Article  PubMed  CAS  Google Scholar 

  40. Zhang Z. and Smith D. L. (1996) Thermal-induced unfolding domains in aldolase by amide hydrogen exchange and mass spectrometry. Protein Sci. 5, 1282–1289.

    Article  PubMed  CAS  Google Scholar 

  41. Maier C. S., Kim O. H., andDeinzer M. L. (1997) Conformationalproperties of the A-state of cytochrome s studied by hydrogen/deuterium exchange and electrospray mass spectrometry. Anal. Biochem. 252, 127–135.

    Article  PubMed  CAS  Google Scholar 

  42. Zhang Z., Li W., Logan T. M., Li M., and Marshall A. G. (1997) Human recombinant [C22A] FK506-binding protein amide hydrogen exchange rates from mass spectrometry match and extend those from NMR. Protein Sci. 6, 2203–2217.

    Article  PubMed  CAS  Google Scholar 

  43. Loh S. N., Rohl C. A., Kiefhaber T., and Baldwin R. L. (1996) A general two-process model describes the hydrogen exchange behavior of RNase A in unfolding conditions. Proc. Natl. Acad. Sci. USA 93, 1982–1987.

    Article  PubMed  CAS  Google Scholar 

  44. Bai Y., Sosnick T. R., Mayne L., and Englander S. W. (1995) Protein folding intermediates: native-state hydrogen exchange. Science 269, 192–197.

    Article  PubMed  CAS  Google Scholar 

  45. Mayo S. L. and Baldwin R. L. (1993) Guanidinium chloride induction of partial unfolding in amide proton exchange in RNase A. Science 262, 873–876.

    Article  PubMed  CAS  Google Scholar 

  46. Kim K.-S. and Woodward C. (1993) Protein internal flexibility and global stability: effect of urea on hydrogen exchange rates of bovine pancreatic trypsin inhibitor. Biochemistry 32, 9609–9613.

    Article  PubMed  CAS  Google Scholar 

  47. Bai Y., Milne J. S., Mayne L., and Englander S. W. (1993) Primary structure effects on peptide group hydrogen exchange. Proteins 17, 75–86.

    Article  PubMed  CAS  Google Scholar 

  48. Swint-Kruse L. and Robertson A. D. (1996) Temperature and pH dependence of hydrogen exchange and global stability for ovomucoid third domain. Biochemistry 35, 171–180.

    Article  PubMed  CAS  Google Scholar 

  49. Zhou Z. and Smith D. L. (1990) Assignment of disulfide bonds in proteins by partial acid hydrolysis and mass spectrometry. J. Protein Chem. 9, 523–532.

    Article  PubMed  CAS  Google Scholar 

  50. Biemann K. (1990) Sequencing of peptides by tandem mass spectrometry and high-energy collision-induced dissociation. Methods Enzymol. 193, 455–479.

    Article  PubMed  CAS  Google Scholar 

  51. Caprioli R. M. and Fan T. (1986) Peptide sequence analysis using exopeptidases with molecular analysis of the truncated polypeptides by mass spectrometry. Anal. Biochem. 154, 596–603.

    Article  PubMed  CAS  Google Scholar 

  52. Smith J. B., Sun Y., Smith D. L., and Green B. (1992) Identification of the posttranslational modifications of bovine lens alpha-B-crystallins by mass spectrometry. Protein Sci. 1, 601–608.

    Article  PubMed  CAS  Google Scholar 

  53. Zhang Z. (1995) Protein hydrogen exchange determined by mass spectrometry: a new tool for probing protein high-order structure and structural changes. Doctoral Dissertation, Purdue University.

    Google Scholar 

  54. Deng Y., Zhang Z., and Smith D. L. (1998) Comparison of continuous and pulsed labeling amide hydrogen exchange/mass spectrometry for studies of protein dynamics. J. Am. Soc. Mass Spec. 10(8), 675–684.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Engen, J.R., Smith, D.L. (2000). Investigating the Higher Order Structure of Proteins. In: Chapman, J.R. (eds) Mass Spectrometry of Proteins and Peptides. Methods in Molecular Biology™, vol 146. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-045-4:95

Download citation

  • DOI: https://doi.org/10.1385/1-59259-045-4:95

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-609-3

  • Online ISBN: 978-1-59259-045-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics