Skip to main content

Identification of Snake Species by Toxin Mass Fingerprinting of Their Venoms

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 146))

Abstract

A new method is proposed to identify venomous snakes, which is based on electrospray ionization mass spectrometry (ESI-MS) detection and is demonstrated with Asiatic snake venoms from the controversial genus Naja (cobras). Appropriate combinations of chromatographic techniques and ESI-MS are used to analyze the crude venom of single specimens. Highly specific toxin mass maps, which can be used as a unique fingerprint for the systematic classification of the snake, are obtained; these results are compared with those obtained using standard samples and with the calculated molecular weights of characterized toxins. By off-line ESI-MS analysis of high-performance liquid chromatography (HPLC) fractions of two venom samples, one from Vietnam (undefined Naja sp.) and the other from Thailand (Naja kaouthia), it was found that both snakes belong to the same species, namely, Naja kaouthia. Using on-line liquid chromatography (LC)/ESI-MS, a direct analysis of crude venom from a single specimen of an unidentified white cobra from Thailand was performed. Two standard venom samples of Naja naja and Naja kaouthia were also analyzed using this improved strategy. By this approach, a peptide mass map of these three samples was obtained within a day and, in addition, an unambiguous systematic classification of the white cobra as Naja kaouthia was obtained. This method is able to identify clearly the origin and purity of crude or partially fractionated venom, which is an important advantage for medical use or in antivenom production.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Harvey A. L., ed. (1990) Snake Toxins. Pergamon, New York.

    Google Scholar 

  2. Shier W. T. and Mebs D., eds. (1990) Handbook ofToxinology, Marcel Dekker, New York.

    Google Scholar 

  3. Stocker K. F., ed. (1990) Medical Use of Snake Venom Proteins, CRC Press, Boca Raton, FL.

    Google Scholar 

  4. Wüster W. and Thorpe R. S. (1991) Asiatic cobras: systematics and snakebite. Experientia 47, 205–209.

    Article  PubMed  Google Scholar 

  5. Wüster W., Thorpe R. S., Cox M. J., Jintakune P., and Nabhitabhata J. (1996) Population systematics of the snake genus Naja (Reptilia: Serpentes: Elapidae) in Indochina: Multivariate morphometrics and comparative mitochondrial DNA sequencing (cytochrome oxidase I). J. Evol. Biol. 8, 493–510.

    Article  Google Scholar 

  6. Bougis P. E., Marchot P., and Rochat H. (1986) Characterization of Elapidae snake venom components using optimized reverse-phase high-performance liquid chromatographic conditions and screening assays for alpha-neurotoxin and phospholipase A2 activities. Biochemistry. 25, 7235–7243.

    Article  PubMed  CAS  Google Scholar 

  7. Da Silva N. J., Jr., Griffin P. R., and Aird S. D. (1991) Comparative chromatog-raphy of Brazilian coral snake (Micrurus) venoms. Comp. Biochem. Physiol. 100B, 117–126.

    Google Scholar 

  8. Daltry J. C., Ponnudurai G., Shin C. K., Tan N. H., Thorpe R. S., and Wuster W. (1996) Electrophoretic profiles and biological activities: intraspecific variation in the venom of the Malayan pit viper (Calloselasma rhodostoma). Toxicon 34, 67–79.

    Article  PubMed  CAS  Google Scholar 

  9. Daltry J. C., Wuester W., and Thorpe R. S. (1996) Diet and snake venom evolution. Nature 379, 537–540.

    Article  PubMed  CAS  Google Scholar 

  10. Kent C. G., Tu A. T., and Geren C. R. (1984) Isotachophoretic and immunologi-cal analysis of venoms from sea snakes (Laticauda semifasciata) and brown recluse spiders (Loxosceles reclusa) of different morphology, locality, sex, and developmental stages. Comp. Biochem. Physiol. B. 77, 303–311.

    PubMed  CAS  Google Scholar 

  11. Marshall T. and Williams K. M. (1994) Analysis of snake venoms by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and two-dimensional electro-phoresis. Appl. Theor. Electrophor. 4, 25–31.

    PubMed  CAS  Google Scholar 

  12. Mendoza C. E., Bhatti T., and Bhatti A. R. (1992) Electrophoretic analysis of snake venoms. J. Chromatogr. 580, 355–363.

    Article  PubMed  CAS  Google Scholar 

  13. Tu A. T., Stermitz J., Ishizaki H., and Nonaka S. (1980) Comparative study of pit viper venoms of genera Trimeresurus from Asia and Bothrops from America: an immunological and isotachophoretic study. Comp. Biochem. Physiol. 66B, 249–254.

    CAS  Google Scholar 

  14. Fenn J. B., Mann M., Meng C. K., Wong S. F., and Whitehouse C. M. (1989) Elec-trospray ionization for mass spectrometry of large biomolecules. Science 246, 64–71.

    Article  PubMed  CAS  Google Scholar 

  15. Fenselau C., Vestling M. M., and Cotter R. J. (1993) Mass spectrometric analysis of proteins. Curr. Opin. Biotechnol. 4, 14–19.

    Article  PubMed  CAS  Google Scholar 

  16. Loo J. A. (1995) Bioanalytical mass spectrometry: many flavors to choose. Bioconjugate Chem. 6, 644–665.

    Article  CAS  Google Scholar 

  17. Siuzdak G. (1994) The emergence of mass spectrometry in biochemical research. Proc. Natl. Acad. Sci. USA 91, 11,290–11,297.

    Article  PubMed  CAS  Google Scholar 

  18. James P., Quadroni M., Carafoli E., and Gonnet G. (1993) Protein identification by mass profile fingerprinting. Biochem. Biophys. Res. Commun. 195, 58–64.

    Article  PubMed  CAS  Google Scholar 

  19. Morris H. R. and Pucci P. (1985) A new method for rapid assignment of S-S bridges in proteins. Biochem. Biophys. Res. Commun. 126, 1122–1128.

    Article  PubMed  CAS  Google Scholar 

  20. Pappin D. J. C., Hojrup P., and Bleasby A. J. (1993) Rapid identification of proteins by peptide-mass fingerprinting. Curr. Biolo. 3, 327–332.

    Article  CAS  Google Scholar 

  21. Yates III J. R., Speicher S., Griffin P., and Hunkapiller T. (1993) Peptide mass maps: a highly informative approach to protein identification. Anal. Biochem. 214, 397–408.

    Article  Google Scholar 

  22. Castaneda O., Sotolongo V., Amor A. M., Stöcklin R., Anderson A. J., Harvey A. L., et al. (1995) Characterization of a potassium channel toxin from the Caribbean Sea anemone Stichodactyla helianthus]. Toxicon 33, 603–613.

    Article  PubMed  CAS  Google Scholar 

  23. McDowell R. S., Dennis M. S., Louie A., Shuster M., Mulkerrin M. G., and Lazarus R. A. (1992) Mambin, a potent glycoprotein IIb-IIIa antagonist and platelet aggregation inhibitor structurally related to the short neurotoxins. Biochemistry 31, 4766–4772.

    Article  PubMed  CAS  Google Scholar 

  24. Tyler M. I., Retson-Yip K. V., Gibson M. K., Barnett D., Howe E., Stöcklin R., et al. (1997) Isolation and amino acid sequence of a new long-chain neuro-toxin with two chromatographic isoforms from the venom of the australian death adder (Acanthophis antarcticus). Toxicon. 35, 555–562.

    Article  PubMed  CAS  Google Scholar 

  25. Escoubas P., Celerier M. L., and Nakajima T. (1997) High-performance liquid chromatography matrix-assisted laser desorption/ionization time-of-flight mass spectrometry peptide fingerprinting of tarantula venoms in the genus Brachy-pelma: chemotaxonomic and biochemical applications. Rapid Commun. Mass Spectrom. 11, 1891–1899.

    Article  PubMed  CAS  Google Scholar 

  26. Escoubas P., Whiteley B. J., Kristensen C. P., Célérier M.-L., Corzo G., and Nakajima T. (1998) Multidimensional peptide fingerprinting by high performance liquid chromatography, capillary zone electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the identification of tarantula venom samples. Rapid Commun. Mass Spectrom. 12, 1075–1084.

    Article  CAS  Google Scholar 

  27. Gillard C., Virelizier H., Arpino P., and Stöcklin R. (1996), Classification of the white Naja by on-line LC-ES-MS, in Eighteenth International Symposium on Capillary Chromatography, vol. III, ISSC, Riva del Garda, Italy, 2197–2197.

    Google Scholar 

  28. Perkins J. R., Parker C. E., and Tomer K. B. (1993) The characterization of snake venoms using capillary electrophoresis in conjunction with electrospray mass spectrometry: Black Mambas. Electrophoresis 14, 458–468.

    Article  PubMed  CAS  Google Scholar 

  29. Perkins J. R. and Tomer K. B. (1995) Characterization of the lower-molecular-mass fraction of venoms from Dendroaspis jamesoni kaimosae and Micrurus fulvius using capillary-electrophoresis electrospray mass spectrometry. Eur. J. Biochem. 233, 815–827.

    Article  PubMed  CAS  Google Scholar 

  30. Stöcklin R. and Savoy L.-A. (1994) On-line LC-ES-MS: anew method for direct analysis of crude venom. Toxicon 32, 408–408 (abstract).

    Google Scholar 

  31. Nelson R. W., Krone J. R., Bieber A. L., and Williams P. (1995) Mass spectro-metric immunoassay. Anal. Chem. 67, 1153–1158.

    Article  PubMed  CAS  Google Scholar 

  32. Nutaphand W. (1986) Cobra, Pata Zoo Publication, Bangkok, unnumbered and unpaginated (in Thai).

    Google Scholar 

  33. Stöcklin R. and Cretton G. (1999) VENOMS: The ultimate Database on Venomous Animals and their Venoms, Atheris Laboratories, Bernex-Geneva, Switzerland. Professional edition, computer program, Ver. 1.0, CD-Rom.

    Google Scholar 

  34. Bairoch A. and Apweiler R. (1996) The SWISS-PROT protein sequence data bank and its new supplement TREMBL. Nucleic Acids Res. 24, 21–25.

    Article  PubMed  CAS  Google Scholar 

  35. Takechi, M. et al., unpublished results (1973), cited by: Dufton, M. J. and Hider, R. C. (1983) Conformational properties of the neurotoxins and cytotoxins isolated from Elapid snake venoms. CRC Crit. Rev. Biochem. 14, 113–171.

    Google Scholar 

  36. Ohta M., Sasaki T., and Hayashi K. (1976) The primary structure of toxin B from the venom of the Indian cobra Naja naja. FEBS Lett. 72, 161–166.

    Article  PubMed  CAS  Google Scholar 

  37. Hayashi K., Takechi M., and Sasaki T. (1971) Amino acid sequence of cyto-toxin I from the venom of the Indian cobra (Naja naja). Biochem. Biophys. Res. Commun. 45, 1357–1362.

    Article  PubMed  CAS  Google Scholar 

  38. Chait B. T., Wang R., Beavis R. C., and Kent S. B. H. (1993) Protein ladder sequencing. Science 262, 89–92.

    Article  PubMed  CAS  Google Scholar 

  39. Stöcklin R., Vu L., Vadas L., Cerini F., Kippen A. D., Offord R. E., et al. (1997) A stable isotope dilution assay for in vivo determination of insulin levels in man by mass spectrometry. Diabetes 46, 44–50.

    Article  PubMed  Google Scholar 

  40. Nakai K., Sasaki T., and Hayashi K. (1971) Amino acid sequence of toxin A from the venom of the Indian cobra (Naja naja). Biochem. Biophys. Res. Commun. 44, 893–897.

    Article  PubMed  CAS  Google Scholar 

  41. Ohta M., Sasaki T., and Hayashi K. (1981) The amino acid sequence of toxin D isolated from the venom of Indian cobra (Naja naja). Biochim. Biophys. Acta 671, 123–128.

    Article  PubMed  CAS  Google Scholar 

  42. Endo T. and Tamiya N. (1987) Current view on the structure-function relationship of postsynaptic neurotoxins from snake venoms. Pharmacol. Ther. 34, 403–451.

    Article  PubMed  CAS  Google Scholar 

  43. Kaneda N., Takechi M., Sasaki T. and Hayashi K. (1984) Amino acid sequence of cytotoxin IIa isolated from the venom of the Indian cobra (Naja naja). Biochem. Int. 9, 603–610.

    PubMed  CAS  Google Scholar 

  44. Takechi M., Tanaka Y., and Hayashi K. (1987) Amino acid sequence of a less-cytotoxic basic polypeptide (LCBP) isolated from the venom of the Indian cobra (Naja naja). Biochem. Int. 14, 145–152.

    PubMed  CAS  Google Scholar 

  45. Takechi M., Hayashi K., and Sasaki T. (1972) The amino acid sequence of cytotoxin II from the venom of the Indian cobra (Naja naja). Mol. Pharmacol. 8 446–451.

    PubMed  CAS  Google Scholar 

  46. Ohkura K., Inoue S., Ikeda K., and Hayashi K. (1988) Amino-acid sequences of four cytotoxins (cytotoxins I, II, III and IV) purified from the venom of the Thailand cobra, Naja naja siamensis. Biochim. Biophys. Acta 954, 148–153.

    Article  PubMed  CAS  Google Scholar 

  47. Arnberg, H., Eaker, D., and Karlsson, E. unpublished results, cited by: Karlsson E. (1973) Chemistry of some potent animal toxins. Experientia 29, 1319–1327.

    Article  Google Scholar 

  48. Joubert F. J. and Taljaard N. (1980) The complete primary structures of three cytotoxins (CM-6, CM-7 and CM-7A) from Naja naja kaouthia (Siamese cobra) snake venom. Toxicon. 18, 455–467.

    Article  PubMed  CAS  Google Scholar 

  49. Inoue S., Ohkura K., Ikeda K., and Hayashi K. (1987) Amino acid sequence of a cytotoxin-like basic protein with low cytotoxic activity from the venom of the Thailand cobra Naja naja siamensis. FEBS Lett. 218, 17–21.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Stöcklin, R., Mebs, D., Boulain, JC., Panchaud, PA., Virelizier, H., Gillard-Factor, C. (2000). Identification of Snake Species by Toxin Mass Fingerprinting of Their Venoms. In: Chapman, J.R. (eds) Mass Spectrometry of Proteins and Peptides. Methods in Molecular Biology™, vol 146. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-045-4:317

Download citation

  • DOI: https://doi.org/10.1385/1-59259-045-4:317

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-609-3

  • Online ISBN: 978-1-59259-045-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics