Advertisement

Rapid Identification of Bacteria Based on Spectral Patterns Using MALDI-TOFMS

  • Jackson O. LayJr.
  • Ricky D. Holland
Part of the Methods in Molecular Biology™ book series (MIMB, volume 146)

Abstract

The characterization of whole or “intact” bacteria, based on the mass spectral detection of genus, species, phenotypic, or genotypic biomarkers, desorbed and ionized directly without any isolation, purification, or concentration steps, has been accomplished using matrix-assisted laser/desorption ionization (MALDI) coupled with time-of-flight mass spectrometry (TOF-MS). Because MALDI-TOFMS plays such a key role in this method and also because these techniques may be unfamiliar to some readers, brief introductions to TOF-MS and MALDI and their advantages for bacterial characterization are presented in Subheadings 1.1. and 1.2.

Keywords

Reference Spectrum Enterobacter Cloaca Sinapinic Acid Shigella Flexneri MALDI Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Stephens W. E. (1946) Pulsed Mass Spectrometer with Time Dispersion. Phys. Rev. 69, 691.Google Scholar
  2. 2.
    Cameron A. E. and Eggers D. F. (1948) Ion velocitron. Rev. Sci. Instrum. 19, 605–607.CrossRefGoogle Scholar
  3. 3.
    Karas M., Bachmann D., Bahr U., and Hillenkamp F. (1987) Matrix-assisted laser desorption of nonvolatile compounds. Int. J. Mass Spectrom. Ion Processes 78, 53–68.CrossRefGoogle Scholar
  4. 4.
    Karas M. and Hillenkamp F. (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 60, 2299–2301.PubMedCrossRefGoogle Scholar
  5. 5.
    Karas M., Bachmann D., and Hillenkamp F. (1985) Influence of wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Anal. Chem. 57, 2935–2939.CrossRefGoogle Scholar
  6. 6.
    Hill W. E. (1996) The polymergse chain reaction: applications for the detection of food borne pathogens. Crit. Rev. Food Sci. Nutr. 36, 123–173.PubMedCrossRefGoogle Scholar
  7. 7.
    Anhalt J. P. and Fenselau C. (1975) Identification of bacteria using mass spectrometry. Anal. Chem. 47, 219–225.CrossRefGoogle Scholar
  8. 8.
    Heller D. N., Fenselau C., Cotter R. J., Demirev P., Olthoff J. K., Honovich J., et al. (1987) Mass spectral analysis of complex lipids desorbed directly from lyophilized membranes and cells. Biochem. Biophys. Res. Commun. 142, 194–199.PubMedCrossRefGoogle Scholar
  9. 9.
    Ho B. C., Fenselau C., Hansen G., Larsen J. and Daniel A. (1983) Dipalmitoyl-phosphatidycholine in amniotic fluid quantified by fast-atom-bombardment mass spectrometry. A. Clin. Chem. 29, 1349–1353.Google Scholar
  10. 10.
    Fenselau C. and Cotter R. J. (1987) Chemical aspects of fast atom bombardment. Chem. Rev. 87, 501–512.CrossRefGoogle Scholar
  11. 11.
    Heller D. N., Cotter R. J., and Fenselau C. (1987) Profiling of bacteria by fast atom bombardment mass spectrometry. Anal. Chem. 59, 2806–2809.PubMedCrossRefGoogle Scholar
  12. 12.
    DeLuca S. Sarver, E. W. Harrington, P.deB., and Voorhees K. J. (1990) Direct Analysis of bacterial fatty acids by Curie-point pryolysis tandem mass spectrometry. Anal. Chem. 62, 1465–1472.PubMedCrossRefGoogle Scholar
  13. 13.
    Fox A., Rogers J. C., Fox K. F., Schnitzer G., Morgan S. L., Brown A., et al. (1990) Chemotaxonomic differentiation of legionella by detection and characterization of aminodeoxyhexoses and other unique sugars using gas chromatography-MS. J. Clinic. Microbiol. March 28, 546–552.Google Scholar
  14. 14.
    Cain T. C., Lubman D. M., and Weber W. J. Jr. (1994) Differentiation of bacteria using protein profiles from matrix-assisted laser desorption/ionization TOF-MS. Rapid Commun. Mass Spectrom. 8, 1026–1030.CrossRefGoogle Scholar
  15. 15.
    Holland R. D., Wilkes J. G., Sutherland J. B., Persons C. E. Voorhees K. J., and Lay J. O. Jr. (1996) Rapid identification of intact whole bacteria based on spectral patterns using MALDI-TOF-MS. Rapid Commun. Mass Spectrom 10, 1227–1232.PubMedCrossRefGoogle Scholar
  16. 16.
    Claydon M. A., Davey S. N., Edward-Jones V., and Gordon D. B. (1996) The rapid identification of intact microorganisms using mass spectrometry. Nature Biotechnol. 14, 1584–1586.CrossRefGoogle Scholar
  17. 17.
    Krishnamurthy T. and Ross P. L. (1996) Rapid identification of bacteria by direct MALDI-TOF-MS analysis of whole cells. Rapid Commun. Mass Spectrom. 10, 1992–1996.PubMedCrossRefGoogle Scholar
  18. 18.
    Holland R. D., Rafii F., Holder C. L., Sutherland J. B., Voorhees K. J. and Lay J. O. Jr. (1997) Investigation into the experimental parameters that affect the MALDI-TOF-MS produced from whole bacteria. Proceedings of the 46th ASMS Conference on Mass Spectrometry and Allied Topics, Orlando, FL, p. 154.Google Scholar
  19. 19.
    Arnold R. J., Karty J. A., Ellington A. D., and Reily J. P. (1989) Monitoring the growth of bacteria culture by MALDI-TOF-MS of whole cells. Analytical Chemistry 71, 1990–1996.CrossRefGoogle Scholar
  20. 20.
    Wang Z., Russon L., Li L., Roser D. C., and Long S. R. (1998) Investigation of spectral reproducibility in direct analysis of bacteria proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 12, 456–464.PubMedCrossRefGoogle Scholar
  21. 21.
    Haag A. M., Taylor S. N., Johnston K. H., and Cole R. B. (1998) Rapid identification and speciation of Haemophilus bacteria by MALDI-TOF-MS. J. Mass Spec. 33, 750–756.CrossRefGoogle Scholar
  22. 22.
    Walker K. L. Chiu R. W. Monnig C. A., and Wilkins C. L. (1993) Off-line coupling of capillary electrophoresis and MALDI-TOF-MS. Anal. Chem. 67, 4197–4204.CrossRefGoogle Scholar
  23. 23.
    Holland R. D., Burns G., Parsons C., Rafii F., Sutherland J. B. and Lay J. O. Jr. (1997) Evaluating the effects of culture age on the rapid identification of whole bacteris using MALDI/TOF-MS. Proceedings of the 45th ASMS Conference on Mass Spectrometry and Allied Topics, Palm Springs, CA, p. 1353.Google Scholar
  24. 24.
    Holland R. D., Rafii F., Holder C. L., Sutherland J. B., Voorhees K. J., and Lay J. O. Jr. (1997) Identification of the proteins observed in MALDITOF mass spectra of whole cells. Proceedings of the 46th ASMS Conference on Mass Spectrometry and Allied Topics, Orlando, FL, p. 194.Google Scholar
  25. 25.
    Holland R. D., Duffy C., Rafii F., Sutherland J. B., Heinz T. M., Holder C. L., Voorhees K. J., and Lay J. O. Jr. (1999) Identification of bacterial proeins observed in MALDI TOF mass spectra from whole cells. Analytical Chemistry 71, 3226–3230.PubMedCrossRefGoogle Scholar
  26. 26.
    Waterman S. R. and Small P. L. C. (1996) Identification of sigma S-dependent genes associated with the stationary-phase acid resistance phenotype of Shigella flexneri. Mol. Microbiol., 21, 925–940.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • Jackson O. LayJr.
    • 1
  • Ricky D. Holland
    • 2
  1. 1.Division of ChemistryNational Center for Toxicological Research, Food and Drug AdministrationJefferson
  2. 2.Division of ChemistryNational Center for Toxicological Research, Food and Drug AdministrationJefferson

Personalised recommendations