Identification of Snake Species by Toxin Mass Fingerprinting of Their Venoms

  • Reto Stöcklin
  • Dietrich Mebs
  • Jean-Claude Boulain
  • Pierre-Alain Panchaud
  • Henri Virelizier
  • Cécile Gillard-Factor
Part of the Methods in Molecular Biology™ book series (MIMB, volume 146)


A new method is proposed to identify venomous snakes, which is based on electrospray ionization mass spectrometry (ESI-MS) detection and is demonstrated with Asiatic snake venoms from the controversial genus Naja (cobras). Appropriate combinations of chromatographic techniques and ESI-MS are used to analyze the crude venom of single specimens. Highly specific toxin mass maps, which can be used as a unique fingerprint for the systematic classification of the snake, are obtained; these results are compared with those obtained using standard samples and with the calculated molecular weights of characterized toxins. By off-line ESI-MS analysis of high-performance liquid chromatography (HPLC) fractions of two venom samples, one from Vietnam (undefined Naja sp.) and the other from Thailand (Naja kaouthia), it was found that both snakes belong to the same species, namely, Naja kaouthia. Using on-line liquid chromatography (LC)/ESI-MS, a direct analysis of crude venom from a single specimen of an unidentified white cobra from Thailand was performed. Two standard venom samples of Naja naja and Naja kaouthia were also analyzed using this improved strategy. By this approach, a peptide mass map of these three samples was obtained within a day and, in addition, an unambiguous systematic classification of the white cobra as Naja kaouthia was obtained. This method is able to identify clearly the origin and purity of crude or partially fractionated venom, which is an important advantage for medical use or in antivenom production.


Snake Venom Crude Venom Unique Fingerprint Venom Composition Naja Naja 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Harvey A. L., ed. (1990) Snake Toxins. Pergamon, New York.Google Scholar
  2. 2.
    Shier W. T. and Mebs D., eds. (1990) Handbook ofToxinology, Marcel Dekker, New York.Google Scholar
  3. 3.
    Stocker K. F., ed. (1990) Medical Use of Snake Venom Proteins, CRC Press, Boca Raton, FL.Google Scholar
  4. 4.
    Wüster W. and Thorpe R. S. (1991) Asiatic cobras: systematics and snakebite. Experientia 47, 205–209.PubMedCrossRefGoogle Scholar
  5. 5.
    Wüster W., Thorpe R. S., Cox M. J., Jintakune P., and Nabhitabhata J. (1996) Population systematics of the snake genus Naja (Reptilia: Serpentes: Elapidae) in Indochina: Multivariate morphometrics and comparative mitochondrial DNA sequencing (cytochrome oxidase I). J. Evol. Biol. 8, 493–510.CrossRefGoogle Scholar
  6. 6.
    Bougis P. E., Marchot P., and Rochat H. (1986) Characterization of Elapidae snake venom components using optimized reverse-phase high-performance liquid chromatographic conditions and screening assays for alpha-neurotoxin and phospholipase A2 activities. Biochemistry. 25, 7235–7243.PubMedCrossRefGoogle Scholar
  7. 7.
    Da Silva N. J., Jr., Griffin P. R., and Aird S. D. (1991) Comparative chromatog-raphy of Brazilian coral snake (Micrurus) venoms. Comp. Biochem. Physiol. 100B, 117–126.Google Scholar
  8. 8.
    Daltry J. C., Ponnudurai G., Shin C. K., Tan N. H., Thorpe R. S., and Wuster W. (1996) Electrophoretic profiles and biological activities: intraspecific variation in the venom of the Malayan pit viper (Calloselasma rhodostoma). Toxicon 34, 67–79.PubMedCrossRefGoogle Scholar
  9. 9.
    Daltry J. C., Wuester W., and Thorpe R. S. (1996) Diet and snake venom evolution. Nature 379, 537–540.PubMedCrossRefGoogle Scholar
  10. 10.
    Kent C. G., Tu A. T., and Geren C. R. (1984) Isotachophoretic and immunologi-cal analysis of venoms from sea snakes (Laticauda semifasciata) and brown recluse spiders (Loxosceles reclusa) of different morphology, locality, sex, and developmental stages. Comp. Biochem. Physiol. B. 77, 303–311.PubMedGoogle Scholar
  11. 11.
    Marshall T. and Williams K. M. (1994) Analysis of snake venoms by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and two-dimensional electro-phoresis. Appl. Theor. Electrophor. 4, 25–31.PubMedGoogle Scholar
  12. 12.
    Mendoza C. E., Bhatti T., and Bhatti A. R. (1992) Electrophoretic analysis of snake venoms. J. Chromatogr. 580, 355–363.PubMedCrossRefGoogle Scholar
  13. 13.
    Tu A. T., Stermitz J., Ishizaki H., and Nonaka S. (1980) Comparative study of pit viper venoms of genera Trimeresurus from Asia and Bothrops from America: an immunological and isotachophoretic study. Comp. Biochem. Physiol. 66B, 249–254.Google Scholar
  14. 14.
    Fenn J. B., Mann M., Meng C. K., Wong S. F., and Whitehouse C. M. (1989) Elec-trospray ionization for mass spectrometry of large biomolecules. Science 246, 64–71.PubMedCrossRefGoogle Scholar
  15. 15.
    Fenselau C., Vestling M. M., and Cotter R. J. (1993) Mass spectrometric analysis of proteins. Curr. Opin. Biotechnol. 4, 14–19.PubMedCrossRefGoogle Scholar
  16. 16.
    Loo J. A. (1995) Bioanalytical mass spectrometry: many flavors to choose. Bioconjugate Chem. 6, 644–665.CrossRefGoogle Scholar
  17. 17.
    Siuzdak G. (1994) The emergence of mass spectrometry in biochemical research. Proc. Natl. Acad. Sci. USA 91, 11,290–11,297.PubMedCrossRefGoogle Scholar
  18. 18.
    James P., Quadroni M., Carafoli E., and Gonnet G. (1993) Protein identification by mass profile fingerprinting. Biochem. Biophys. Res. Commun. 195, 58–64.PubMedCrossRefGoogle Scholar
  19. 19.
    Morris H. R. and Pucci P. (1985) A new method for rapid assignment of S-S bridges in proteins. Biochem. Biophys. Res. Commun. 126, 1122–1128.PubMedCrossRefGoogle Scholar
  20. 20.
    Pappin D. J. C., Hojrup P., and Bleasby A. J. (1993) Rapid identification of proteins by peptide-mass fingerprinting. Curr. Biolo. 3, 327–332.CrossRefGoogle Scholar
  21. 21.
    Yates III J. R., Speicher S., Griffin P., and Hunkapiller T. (1993) Peptide mass maps: a highly informative approach to protein identification. Anal. Biochem. 214, 397–408.CrossRefGoogle Scholar
  22. 22.
    Castaneda O., Sotolongo V., Amor A. M., Stöcklin R., Anderson A. J., Harvey A. L., et al. (1995) Characterization of a potassium channel toxin from the Caribbean Sea anemone Stichodactyla helianthus]. Toxicon 33, 603–613.PubMedCrossRefGoogle Scholar
  23. 23.
    McDowell R. S., Dennis M. S., Louie A., Shuster M., Mulkerrin M. G., and Lazarus R. A. (1992) Mambin, a potent glycoprotein IIb-IIIa antagonist and platelet aggregation inhibitor structurally related to the short neurotoxins. Biochemistry 31, 4766–4772.PubMedCrossRefGoogle Scholar
  24. 24.
    Tyler M. I., Retson-Yip K. V., Gibson M. K., Barnett D., Howe E., Stöcklin R., et al. (1997) Isolation and amino acid sequence of a new long-chain neuro-toxin with two chromatographic isoforms from the venom of the australian death adder (Acanthophis antarcticus). Toxicon. 35, 555–562.PubMedCrossRefGoogle Scholar
  25. 25.
    Escoubas P., Celerier M. L., and Nakajima T. (1997) High-performance liquid chromatography matrix-assisted laser desorption/ionization time-of-flight mass spectrometry peptide fingerprinting of tarantula venoms in the genus Brachy-pelma: chemotaxonomic and biochemical applications. Rapid Commun. Mass Spectrom. 11, 1891–1899.PubMedCrossRefGoogle Scholar
  26. 26.
    Escoubas P., Whiteley B. J., Kristensen C. P., Célérier M.-L., Corzo G., and Nakajima T. (1998) Multidimensional peptide fingerprinting by high performance liquid chromatography, capillary zone electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the identification of tarantula venom samples. Rapid Commun. Mass Spectrom. 12, 1075–1084.CrossRefGoogle Scholar
  27. 27.
    Gillard C., Virelizier H., Arpino P., and Stöcklin R. (1996), Classification of the white Naja by on-line LC-ES-MS, in Eighteenth International Symposium on Capillary Chromatography, vol. III, ISSC, Riva del Garda, Italy, 2197–2197.Google Scholar
  28. 28.
    Perkins J. R., Parker C. E., and Tomer K. B. (1993) The characterization of snake venoms using capillary electrophoresis in conjunction with electrospray mass spectrometry: Black Mambas. Electrophoresis 14, 458–468.PubMedCrossRefGoogle Scholar
  29. 29.
    Perkins J. R. and Tomer K. B. (1995) Characterization of the lower-molecular-mass fraction of venoms from Dendroaspis jamesoni kaimosae and Micrurus fulvius using capillary-electrophoresis electrospray mass spectrometry. Eur. J. Biochem. 233, 815–827.PubMedCrossRefGoogle Scholar
  30. 30.
    Stöcklin R. and Savoy L.-A. (1994) On-line LC-ES-MS: anew method for direct analysis of crude venom. Toxicon 32, 408–408 (abstract).Google Scholar
  31. 31.
    Nelson R. W., Krone J. R., Bieber A. L., and Williams P. (1995) Mass spectro-metric immunoassay. Anal. Chem. 67, 1153–1158.PubMedCrossRefGoogle Scholar
  32. 32.
    Nutaphand W. (1986) Cobra, Pata Zoo Publication, Bangkok, unnumbered and unpaginated (in Thai).Google Scholar
  33. 33.
    Stöcklin R. and Cretton G. (1999) VENOMS: The ultimate Database on Venomous Animals and their Venoms, Atheris Laboratories, Bernex-Geneva, Switzerland. Professional edition, computer program, Ver. 1.0, CD-Rom.Google Scholar
  34. 34.
    Bairoch A. and Apweiler R. (1996) The SWISS-PROT protein sequence data bank and its new supplement TREMBL. Nucleic Acids Res. 24, 21–25.PubMedCrossRefGoogle Scholar
  35. 35.
    Takechi, M. et al., unpublished results (1973), cited by: Dufton, M. J. and Hider, R. C. (1983) Conformational properties of the neurotoxins and cytotoxins isolated from Elapid snake venoms. CRC Crit. Rev. Biochem. 14, 113–171.Google Scholar
  36. 36.
    Ohta M., Sasaki T., and Hayashi K. (1976) The primary structure of toxin B from the venom of the Indian cobra Naja naja. FEBS Lett. 72, 161–166.PubMedCrossRefGoogle Scholar
  37. 37.
    Hayashi K., Takechi M., and Sasaki T. (1971) Amino acid sequence of cyto-toxin I from the venom of the Indian cobra (Naja naja). Biochem. Biophys. Res. Commun. 45, 1357–1362.PubMedCrossRefGoogle Scholar
  38. 38.
    Chait B. T., Wang R., Beavis R. C., and Kent S. B. H. (1993) Protein ladder sequencing. Science 262, 89–92.PubMedCrossRefGoogle Scholar
  39. 39.
    Stöcklin R., Vu L., Vadas L., Cerini F., Kippen A. D., Offord R. E., et al. (1997) A stable isotope dilution assay for in vivo determination of insulin levels in man by mass spectrometry. Diabetes 46, 44–50.PubMedCrossRefGoogle Scholar
  40. 40.
    Nakai K., Sasaki T., and Hayashi K. (1971) Amino acid sequence of toxin A from the venom of the Indian cobra (Naja naja). Biochem. Biophys. Res. Commun. 44, 893–897.PubMedCrossRefGoogle Scholar
  41. 41.
    Ohta M., Sasaki T., and Hayashi K. (1981) The amino acid sequence of toxin D isolated from the venom of Indian cobra (Naja naja). Biochim. Biophys. Acta 671, 123–128.PubMedCrossRefGoogle Scholar
  42. 42.
    Endo T. and Tamiya N. (1987) Current view on the structure-function relationship of postsynaptic neurotoxins from snake venoms. Pharmacol. Ther. 34, 403–451.PubMedCrossRefGoogle Scholar
  43. 43.
    Kaneda N., Takechi M., Sasaki T. and Hayashi K. (1984) Amino acid sequence of cytotoxin IIa isolated from the venom of the Indian cobra (Naja naja). Biochem. Int. 9, 603–610.PubMedGoogle Scholar
  44. 44.
    Takechi M., Tanaka Y., and Hayashi K. (1987) Amino acid sequence of a less-cytotoxic basic polypeptide (LCBP) isolated from the venom of the Indian cobra (Naja naja). Biochem. Int. 14, 145–152.PubMedGoogle Scholar
  45. 45.
    Takechi M., Hayashi K., and Sasaki T. (1972) The amino acid sequence of cytotoxin II from the venom of the Indian cobra (Naja naja). Mol. Pharmacol. 8 446–451.PubMedGoogle Scholar
  46. 46.
    Ohkura K., Inoue S., Ikeda K., and Hayashi K. (1988) Amino-acid sequences of four cytotoxins (cytotoxins I, II, III and IV) purified from the venom of the Thailand cobra, Naja naja siamensis. Biochim. Biophys. Acta 954, 148–153.PubMedCrossRefGoogle Scholar
  47. 47.
    Arnberg, H., Eaker, D., and Karlsson, E. unpublished results, cited by: Karlsson E. (1973) Chemistry of some potent animal toxins. Experientia 29, 1319–1327.CrossRefGoogle Scholar
  48. 48.
    Joubert F. J. and Taljaard N. (1980) The complete primary structures of three cytotoxins (CM-6, CM-7 and CM-7A) from Naja naja kaouthia (Siamese cobra) snake venom. Toxicon. 18, 455–467.PubMedCrossRefGoogle Scholar
  49. 49.
    Inoue S., Ohkura K., Ikeda K., and Hayashi K. (1987) Amino acid sequence of a cytotoxin-like basic protein with low cytotoxic activity from the venom of the Thailand cobra Naja naja siamensis. FEBS Lett. 218, 17–21.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • Reto Stöcklin
    • 1
  • Dietrich Mebs
    • 2
  • Jean-Claude Boulain
    • 3
  • Pierre-Alain Panchaud
    • 4
  • Henri Virelizier
    • 5
  • Cécile Gillard-Factor
    • 6
  1. 1.Atheris Laboratories,Research and DevelopmentGenevaSwitzerland
  2. 2.Zentrum der RechtsmedizinFrankfurtGermany
  3. 3.Département d’Ingénierie et d’Etude des ProtéinesCEA-SaclayFrance
  4. 4.Reptiles du Monde,GrandvauxSwitzerland
  5. 5.CEA SaclaySPEA-SAISCedexFrance
  6. 6.Département des Procédés d’Enrichissement,DCC/DPE/SPCP/LASOCEA-SaclayFrance

Personalised recommendations