Skip to main content

Murine Natural Killer Cell Cloning from Fetal Thymic Organ Cultures

  • Protocol
Natural Killer Cell Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 121))

  • 1253 Accesses

Abstract

The relationship of natural killer (NK) cells to T cells has been a longstanding enigma. It is well established that development of NK cells does not require a thymus (because they are present in athymic mice), recombination activating genes (because they are present in RAG-1 and RAG-2 knockout mice) or DNA-dependent protein kinase (because they are present in severe combined immunodeficiency [SCID] mice) (1,2). NK cells do not express CD3 or TCR on their surface and they are classically defined as CD3–CD56+ (in humans) or CD3–NK1.1+ (in mice) (35). However, there has been some suggestion that NK cells might share a common progenitor with T cells. This has been derived from the observations that some NK cells contain a truncated mRNA for TCR-β (4), that activated NK contain cytoplasmic CD3ε and that fetal NK cells also contain cytoplasmic CD3ε (37). Several studies demonstrated that fetal thymi contain progenitors that might develop into T cells or NK cells depending on whether they mature within a thymic or extrathymic microenvironment, respectively (7). The discovery of a novel lymphocyte subset that expresses markers for both T cells and NK cells, the so-called T/NK lymphocytes, raised further questions about the ontogenic relationship of NK to T cells (8,9). More recently, Sanchez et al. (7) showed that human fetal thymi contain a bipotential progenitor that could develop along either of the T or NK maturation pathways. This led us and others to determine whether NK cells can be demonstrated and cloned from fetal thymi (10,11). Surprisingly, we found that NK1.1 is among the earliest lymphohematopoietic genes to be transcribed as its mRNA is demonstrable in d 9 fetuses (exact organ distribution not yet determined) and in the earliest of thymic anlages (d 11 of gestation) (11). Although T/NK cells can be demonstrated in fetal thymic organ cultures (FTOC) established from day 14 fetal thy mi, the majority of NK1.1+ cells obtained from fetal thymi appear to be the classical, CD3– NK1.1+ cells (10,11).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dorshkind K., Pollack S. B., Bosma M. J., and Phillips R. A. (1985) Natural killer (NK) cells are present in mice with severe combined immunodeficiency (scid). J. Immunol. 134, 3798–3801.

    PubMed  CAS  Google Scholar 

  2. Mombaerts P., Iacomini J., Johnson R. S., Herrup K., Tonegawa S., and Papaioannou V. E. (1992) RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869–877.

    Article  PubMed  CAS  Google Scholar 

  3. Whiteside T. L. and Herberman R. B. (1994) Role of human natural killer cells in health and disease. Clin. Diag. Lab. Immunol. 1, 125–133.

    CAS  Google Scholar 

  4. Lanier L. L., Phillips J. H., Hackett Jr J., Tutt M., Kumar V., and Terhorst C. (1986) Natural killer cells: definition of a cell type rather than a function. J. Immunol. 137, 2735–2739.

    PubMed  CAS  Google Scholar 

  5. Trinchieri G. (1989) Biology of natural killer cells. Adv. Immunol. 47, 187–376.

    Article  PubMed  CAS  Google Scholar 

  6. Lanier L. L., Chang C., Spits H., and Phillips J. H. (1992) Expression of cytoplasmic CD3 epsilon proteins in activated human adult natural killer (NK) cells and CD3 gamma, delta, epsilon complexes in fetal NK cells. Implications for the relationship of NK and T lymphocytes. J. Immunol. 149, 1876–1880.

    PubMed  CAS  Google Scholar 

  7. Sanchez M. J., Muench M. O., Roncarolo M. G., Lanier L. L., and Phillips J. H. (1994) Identification of a common T/natural killer cell progenitor in human fetal thymus. J. Exp. Med. 180, 569–576.

    Article  PubMed  CAS  Google Scholar 

  8. Bendelac A., Rivera M. N., Park S. H., and Roark J. H. (1997) Mouse CD1-specific NK 1 T cells: development, specificity and function. Ann. Rev. Immunol. 15, 535–562.

    Article  CAS  Google Scholar 

  9. Ballas Z. K. and Rasmussen W. (1990) NK1. 1+ thymocytes: adult murine CD4- CD8- thymocytes contain an NK1. 1+, CD3+, CD5 high, CD44 high, TCR-Vb8+ subset. J. Immunol. 145, 1039–1045.

    PubMed  CAS  Google Scholar 

  10. Brooks C. G., Georgiou A., and Jordan R. K. (1993) The majority of immature fetal thymocytes can be induced to proliferate to IL-2 and differentiate into cells indistinguishable from mature natural killer cells. J. Immunol. 151, 6645–6656.

    PubMed  CAS  Google Scholar 

  11. Ballas, Z. K., Rasmussen W. L., Alber C. A., and Sandor M. (1997) Ontogeny of Thymic NK1. 1+ cells. J. Immunol. 159, 1174–1181.

    PubMed  CAS  Google Scholar 

  12. Robey E. and Fowlkes B. J. (1994) Selective events in T cell development. Ann. Rev. Immunol. 12, 675–705.

    Article  CAS  Google Scholar 

  13. Spits H., Lanier L. L., and Phillips J. H. (1995) Development of human T and natural killer cells. Blood 85, 2654–2670.

    PubMed  CAS  Google Scholar 

  14. Rodewald H. R., Moingeon P., Lucich J. L., Dosiou C., Lopes P., and Reinherz E. L. (1992) A population of early fetal thymocytes expressing FcγRII/III contains precursors of T lymphocytes and natural killer cells. Cell 69, 139–150.

    Article  PubMed  CAS  Google Scholar 

  15. Jenkinson E. J. and Owen J. J. (1990) T cell differentiation in thymus organ culture. Semin. Immunol. 2, 51–58.

    PubMed  CAS  Google Scholar 

  16. Carlyle J. R., Michie A. M., Furlonger C., Nakano T., Lenardo M. J., Paige C. J., and Zuniga-Pflucker J. C. (1997) Identification of a novel developmental stage marking lineage commitment of progenitor thymocytes. J. Exp. Med. 186, 173–182.

    Article  PubMed  CAS  Google Scholar 

  17. Ernst B., Surh C. D., and Sprent J. (1995) Thymic selection and cell division. J. Exp. Med. 182, 961–971.

    Article  PubMed  CAS  Google Scholar 

  18. Kumamoto T., Inaba M., Toki J., Adachi Y., Imamura H., and Ikehara S. (1995) Cytotoxic effects of irradiation and deoxyguanosine on fetal thymus. Immunobiology 192, 365–381.

    PubMed  CAS  Google Scholar 

  19. Kingston R., Jenkinson E. J., and Owen J. J. (1985) A single stem cell can recolonize an embryonic thymus, producing phenotypically distinct T cell populations. Nature 317, 811–813.

    Article  PubMed  CAS  Google Scholar 

  20. Puzanov I. J., Bennett M., and Kumar V. (1996) IL-15 can substitute for the marrow microenvironment in the differentiation of natural killer cells. J. Immunol. 157, 4282–4285.

    PubMed  CAS  Google Scholar 

  21. Williams N. S., Moore T. A., Schatzle J. D., Puzanov I. J., Sivakumar P. V., Zlotnik A., Bennett M., and Kumar V. (1997) Generation of lytic natural killer 1. 1+, Ly49- cells from multipotential murine bone marrow progenitors in a stroma-free culture: definition of cytokine requirements and developmental intermediates. J. Exp. Med. 186, 1609–1614

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc.

About this protocol

Cite this protocol

Ballas, Z.K., Rasmussen, W.L. (1999). Murine Natural Killer Cell Cloning from Fetal Thymic Organ Cultures. In: Campbell, K.S., Colonna, M. (eds) Natural Killer Cell Protocols. Methods in Molecular Biology, vol 121. Humana Press. https://doi.org/10.1385/1-59259-044-6:39

Download citation

  • DOI: https://doi.org/10.1385/1-59259-044-6:39

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-683-3

  • Online ISBN: 978-1-59259-044-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics