Skip to main content

Cloning and Culturing of Fetal Mouse Natural Killer Cells

  • Protocol
Natural Killer Cell Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 121))

Abstract

The ability to study the properties and functions of individual cells is a major goal of cell biologists. Nowhere is this more true than in studies of the immune system, in which the complexity is such that results obtained at the population level often obscure critical aspects of the function and diversity of the component cells. The study of individual cells per se is still technically difficult and of necessity limited in scope, leading to the compromise in which populations of cells derived from a single parent cell (clones) are studied. Considerable valuable information can be obtained from even relatively small clones of limited life span (ref. 1, Chapter 2), but the ultimate aim is to produce clonal populations of cells that show indefinite growth and retain normal physiological properties, thereby permitting large-scale and long-term studies. The discovery of methods for cloning mouse and human T cells led directly to major advances in our understanding of the recognition mechanisms and functional capabilities of “individual” T cells. More recently, the development of procedures for the cloning of human NK cells was instrumental in the discovery of killer cell immunoglobulin-like inhibitory (KIR) receptors (2, 3; and Chapter 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klinman N. R. (1996) In vitro analysis of the generation and propagation of memory B cells. Immunol. Rev. 150, 91–111.

    Article  PubMed  CAS  Google Scholar 

  2. Pantaleo G., Zocchi M. R., Ferrini S., Poggi A., Tambussi G., Bottino C., and Moretta A. (1988) Human cytolytic cell clones lacking surface expression of T cell receptor α/β or γ/δ. Evidence that surface structures other than CD3 or CD2 molecules are required for signal transduction. J. Exp. Med. 168, 13–24.

    Article  PubMed  CAS  Google Scholar 

  3. Moretta A., Tambussi G., Bottino C., Tripodi G., Merli A., Ciccone E., Pantako G., and Moretta L. (1990) A novel surface antigen expressed by a subset of human CD3- CD 16- natural killer cells. Role in cell activation and regulation of cytolytic function. J. Exp. Med. 171, 695–714.

    Article  PubMed  CAS  Google Scholar 

  4. Kuribayashi K., Gillis S., Kern D. E., and Henney C. S. (1981) Murine NK cell cultures: effects of interleukin 2 and interferon on cell growth and cytotoxic reactivity. J. Immunol. 126, 2321–2327.

    PubMed  CAS  Google Scholar 

  5. Dennert G. (1980) Cloned lines of natural killer cells. Nature 287, 47–49.

    Article  PubMed  CAS  Google Scholar 

  6. Nabel G., Bucalo Z. R., Allard J., Wigzell H., and Cantor H. (1981) Multiple activities of a cloned cell line mediating natural killer cell function. J. Exp. Med. 153, 1582–1591.

    Article  PubMed  CAS  Google Scholar 

  7. Brooks C. G., Kuribayashi K., Sale G. E., and Henney C. S. (1982) Characterization of five cloned murine cell lines showing high cytolytic activity against YAC-1 cells. J. Immunol. 128, 2326–2335.

    PubMed  CAS  Google Scholar 

  8. Minato N., Amagai T., Yodoi J. Diamanstein T., and Kano S. (1985) Regulation of the growth and functions of cloned murine large granular lymphocyte lines by resident macrophages. J. Exp. Med. 162, 1161–1181.

    Article  PubMed  CAS  Google Scholar 

  9. Brooks C. G, Urdal D. L., and Henney C. S. (1983) Lymphokine driven “differentiation” of cytotoxic T cell clones into cells with NK-like specificity: correlations with display of membrane macromolecules. Immunol. Rev. 72, 43–72.

    Article  PubMed  CAS  Google Scholar 

  10. Brooks C. G., Burton R. C., Pollack S. B., and Henney C. S. (1983) The presence of NK alloantigens on cloned cytotoxic T lymphocytes. J. Immunol. 131, 1391–1395.

    PubMed  CAS  Google Scholar 

  11. Brooks C. G. (1983) Reversible induction of natural killer cell activity in cloned murine cytotoxic T lymphocytes. Nature 305, 155–158.

    Article  PubMed  CAS  Google Scholar 

  12. Yanagi Y., Caccia N., Kronenberg M., Chin B., Roder J., Rohel D., Kiyohara T., Lauzon R., Toyonaga B., Rosenthal K., Dennert G., Acha-Orbea H., Hengartner H., Hood L., and Mak T. W. (1985) Gene rearrangement in cells with natural killer activity and expression of the β-chain of the T-cell antigen receptor. Nature 314, 631–633.

    Article  PubMed  CAS  Google Scholar 

  13. Ikuta K., Hattori M., Wake K., Kano S., Honjo T., Yodoi J., and Minato N. (1986) Expression of a rearrangement of the α, β, and γ chain genes of the T cell receptor in cloned murine large granular lymphocyte lines. J. Exp. Med. 164, 428–442.

    Article  PubMed  CAS  Google Scholar 

  14. Koyasu S. (1994) CD3+ CD16+ NK1. 1+ B220+ large granular lymphocytes arise from both α-β TCR+ CD4- CD8- and γ-δ TCR+ CD4- CD8- cells. J. Exp. Med. 179, 1957–1972.

    Article  PubMed  CAS  Google Scholar 

  15. Carena I., Shamshiev A., Donda A., Colonna M., and De Libero G. (1997) Major histocompatibility class I molecules modulate activation threshold and early signaling of T cell antigen receptor-γ/δ cells stimulated by non-peptide ligands. J. Exp. Med. 186, 1769–1774.

    Article  PubMed  CAS  Google Scholar 

  16. Spits H., Lanier L., and Phillips J. M. (1995) Development of human T and natural killer cells. Blood 85, 2654–2670.

    PubMed  CAS  Google Scholar 

  17. Sanchez M. J., Muench M. O., Roncarolo M. G., Lanier L. L., and Phillips J. M. (1994) Identification of a common T/natural killer cell progenitor in human fetal thymus. J. Exp. Med. 180, 569–576.

    Article  PubMed  CAS  Google Scholar 

  18. Carlyle J. R., Michie A. M., Furlonger C., Nakano T., Lenardo M. J., Paige C. J., and Zúniga-Pflücker J. C. (1997) Identification of a novel developmental stage marking lineage commitment of progenitor thymocytes. J. Exp. Med. 186, 173–182.

    Article  PubMed  CAS  Google Scholar 

  19. Rodewald H-R., Moingeon P., Lucich J. L., Doziou C., Lopez P., and Reinherz E. (1992) A population of early fetal thymocytes expressing FcγRII/III contains precursors of T lymphocytes and natural killer cells. Cell 69, 139–150.

    Article  PubMed  CAS  Google Scholar 

  20. Brooks C. G., Georgiou A., and Jordan R. K. (1993) The majority of immature fetal thymocytes can be induced to proliferate to IL-2 and differentiate into cells indistinguishable from mature natural killer cells. J. Immunol. 151, 6645–6656.

    PubMed  CAS  Google Scholar 

  21. Ballas Z. K., Rasmussen W. L., Alber C. A., and Sandor M. (1997) Ontogeny of thymic NK1. 1+ cells. J. Immunol. 159, 1174–1181.

    PubMed  CAS  Google Scholar 

  22. Manoussaka M., Georgiou A., Rossiter B., Shrestha S., Toomey J. A., Sivakumar P. V., Bennett M., Kumar V., and Brooks C. G. (1997) Phenotypic and functional characterisation of long-lived NK cell lines of different maturational status obtained from mouse fetal liver. J. Immunol. 158, 112–119.

    PubMed  CAS  Google Scholar 

  23. Toomey J. A., Shrestha S., de la Rue S. A., Gays F., Robinson J. H., Chrzanowska-Lightowlers Z. M. A., and Brooks C. G. (1998) MHC class I expression protects target cells from lysis by Ly49-deficient fetal NK cells. Eur. J. Immunol. 28, 47–56.

    Article  PubMed  CAS  Google Scholar 

  24. Manoussaka M. S., Smith R. J., Conlin V., Toomey J. A., and Brooks C. G. (1998) Fetal mouse NK cell clones are deficient in Ly49 expression, share a common broad lytic specificity, and undergo continuous and extensive diversification in vitro. J. Immunol. 160, 2197–2206.

    PubMed  CAS  Google Scholar 

  25. Toomey J. A., Salcedo M., Cotterill L. A., Millrain M. M., Chrzanowska-Lightowlers Z., Lawry J., Fraser K. P., Gays F., Robinson J. H., Shrestha S., Dyson P. J., and Brooks C. G. (1999). Stochastic acquisition of Qa1 receptors during the development of fetal NK cells in vitro accounts in part but not in whole for the ability of these cells to distinguish between class I sufficient and class I deficient targets. J. Immunol. 163, in press.

    Google Scholar 

  26. Jenkinson E. (1998) in Haemopoietic and Lymphoid Cell Culture (Lamb J. and Dallman M., eds.), in press.

    Google Scholar 

  27. Wayner E. A., and Brooks C. G. (1984) Induction of NKCF-like activity in mixed lymphocyte-tumor cell culture: direct involvement of mycoplasma infection of tumor cells. J. Immunol. 132, 2135–2142.

    PubMed  CAS  Google Scholar 

  28. Chen T. R. (1977) In situ detection of mycoplasma contamination in cell cultures by fluorescent Hoechst 33258 stain. Exp. Cell Res. 104, 255–262.

    Article  PubMed  CAS  Google Scholar 

  29. Gillis S., Ferm M. M., Ou W., and Smith K. A. (1978) T cell growth factor: parameters of production and a quantitative microassay for activity. J. Immunol. 120, 2027–2032.

    PubMed  CAS  Google Scholar 

  30. Linnemeyer P. A. and Pollack S. B. (1993) Prostaglandin E2-induced changes in the phenotype, morphology, and lytic activity of IL-2-activated natural killer cells. J. Immunol. 150, 3747–3754.s

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc.

About this protocol

Cite this protocol

Brooks, C.G. (1999). Cloning and Culturing of Fetal Mouse Natural Killer Cells. In: Campbell, K.S., Colonna, M. (eds) Natural Killer Cell Protocols. Methods in Molecular Biology, vol 121. Humana Press. https://doi.org/10.1385/1-59259-044-6:13

Download citation

  • DOI: https://doi.org/10.1385/1-59259-044-6:13

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-683-3

  • Online ISBN: 978-1-59259-044-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics