Skip to main content

Inducing De Novo Formation of Gap Juntion Channels

  • Protocol
Connexin Methods and Protocols

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 154))

  • 706 Accesses

Abstract

Intercellular gap junction (GJ) channels arise from the association of two hemichannels, ahexameric assembly of connexin membrane proteins, between two cells (for review, see refs. 1,2). Connexins have the shortest half-lives of all known membrane channel proteins, approx 2-3 h, and consequently GJ channel formation and turnover is believed to be relatively fast (for review, see ref. 3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bennett M. V. and Verselis V. K. (1992) Biophysics of gap junctions. Semin. Cell Biol. 3, 29–47.

    Article  PubMed  CAS  Google Scholar 

  2. Sosinsky G. E. (1996) Molecular organization of gap junction membrane channels. J. Bioenerg. Biomembr. 28, 297–309.

    Article  PubMed  CAS  Google Scholar 

  3. Laird D. W. (1996) The life cycle of a connexin: gap junction formation, removal, and degradation. J. Bioenerg. Biomembr. 28, 311–318.

    Article  PubMed  CAS  Google Scholar 

  4. Loewenstein W. R., Kanno Y., and Socolar S. J. (1978) Quantum jumps of conductance during formation of membrane channels at cell-cell junction. Nature 274, 133–136.

    Article  PubMed  CAS  Google Scholar 

  5. Chow I. and Poo M. M. (1984) Formation of electrical coupling between embryonic Xenopus muscle cells in culture. J. Physiol. 346, 181–194.

    PubMed  CAS  Google Scholar 

  6. Chow I. and S H. Young (1987) Opening of single gap junction channels during formation of electrical coupling between embryonic muscle cells. Dev. Biol. 122, 332–337.

    Article  PubMed  CAS  Google Scholar 

  7. Rook M. B., Jongsma H. J., and van Ginneken A. C. ( 1988) Properties of single gap junctional channels between isolated neonatal rat heart cells. Am. J. Physiol. 255, H770–H782.

    PubMed  CAS  Google Scholar 

  8. Churchill D. and Caveney S. (1993) Double whole-cell patch-clamp characterization of gap junctional channels in isolated insect epidermal cell pairs. J. Membr. Biol. 135, 165–180.

    PubMed  CAS  Google Scholar 

  9. Bukauskas F. F. and Weingart R. (1993) Multiple conductance states of newly formed single gap junction channels between insect cells. Pflügers Arch. 423, 152–154.

    Article  PubMed  CAS  Google Scholar 

  10. Bukauskas F. F., Elfgang C., Willecke K., and Weingart R. (1995) Heterotypic gap junction channels (connexin26-connexin32) violate the paradigm of unitary conductance. Pflügers Arch. 429, 870–872.

    Article  PubMed  CAS  Google Scholar 

  11. Bukauskas F. F., Elfgang C., Willecke K., and Weingart R. (1995) Biophysical properties of gap junction channels formed by mouse connexin40 in induced pairs of transfected human HeLa cells. Biophys. J. 68, 2289–2298.

    Article  PubMed  CAS  Google Scholar 

  12. Keane R. W., Mehta P. P., Rose B., Honig L. S., Loewenstein W. R., and Rutishauser U. (1988) Neural differentiation, NCAM-mediated adhesion, and gap junctional communication in neuroectoderm. A study in vitro. J. Cell Biol. 106, 1307–1319.

    Article  PubMed  CAS  Google Scholar 

  13. Meyer R. A., Laird D. W., Revel J. P., and Johnson R. G. (1992) Inhibition of gap junction and adherens junction assembly by connexin and A-CAM antibodies. J. Cell Biol. 119, 179–189.

    Article  PubMed  CAS  Google Scholar 

  14. Ghoshroy S., Goodenough D. A., and Sosinsky G. E. (1995) Preparation, characterization, and structure of half gap junctional layers split with urea and EGTA. J. Membr. Biol. 146, 15–28.

    PubMed  CAS  Google Scholar 

  15. Johnson R., Meyer R., and Lampe P. (1989) Gap junction formation: A self-assembly model involving membrane domains of lipid and protein, in Cell Interaction and Gap Junctions (Sperelakis N. and Cole W. C., eds.), CRC Press, Boca Raton, FL, pp. 159–179.

    Google Scholar 

  16. Burt J. M. and Spray D. C. (1988) Inotropic agents modulate gap junctional conductance between cardiac myocytes. Am. J. Physiol. 254, H1206–H1210.

    PubMed  CAS  Google Scholar 

  17. Giaume C., C. Randriamampita, and A. Trautmann (1989) Arachidonic acid closes gap junction channels in rat lacrimal glands. Pflügers. Arch. 413, 273–279.

    Article  PubMed  CAS  Google Scholar 

  18. Bukauskas F. F. and Weingart R. (1994) Voltage-dependent gating of single gap junction channels in an insect cell line. Biophys. J. 67, 613–625.

    Article  PubMed  CAS  Google Scholar 

  19. Bukauskas F. F., Vogel R., and Weingart R. (1997) Biophysical properties of heterotypic gap junctions newly formed between two types of insect cells. J. Physiol. (London) 499(Pt 3), 701–713.

    CAS  Google Scholar 

  20. Valiunas V., Bukauskas F. F., and Weingart R. (1997) Conductances and selective permeability of connexin43 gap junction channels examined in neonatal rat heart cells. Circ. Res. 80, 708–719.

    PubMed  CAS  Google Scholar 

  21. Bukauskas F. F., Shrager P., and Peracchia C. (1998) Gating properties of gap junction channels in Schwann cells and fibroblasts isolated from the sciatic nerve of neonatal rats, in Gap Junctions (Werner R., ed.), IOS Press, Amsterdam, pp. 25–29.

    Google Scholar 

  22. Churchill D., Coodin S., Shivers R. R., and Caveney S. (1993) Rapid de novo formation of gap junctions between insect hemocytes in vitro—A freeze-fracture, dye-transfer and patch-clamp study. J. Cell Sci. 104, 763–772.

    Google Scholar 

  23. Bukauskas F. F. and Weingart R. (1993) Temperature dependence of gap junction properties in neonatal rat heart cells. Pflügers Arch. 423, 133–139.

    Article  PubMed  CAS  Google Scholar 

  24. Elfgang C., Eckert R., Lichtenberg-Frate H., Butterweck A., Traub O., Klein R. A., Hulser D. F., and Willecke K. (1995) Specific permeability and selective formation of gap junction channels in connexin-transfected HeLa cells. J. Cell. Biol. 129, 805–817.

    Article  PubMed  CAS  Google Scholar 

  25. Neyton J. and Trautmann A. (1985) Single-channel currents of an intercellular junction. Nature 317, 331–335.

    Article  PubMed  CAS  Google Scholar 

  26. Weingart R. and Bukauskas F. F. (1993) Gap junction channels of insects exhibit a residual conductance. Pflügers Arch. 424, 192–194.

    Article  PubMed  CAS  Google Scholar 

  27. Cao F., Eckert R., Elfgang C., Nitsche J. M., Snyder S. A., Hulser D. F., Willecke K., and Nicholson B. J. (1998) A quantitative analysis of connexin-specific permeability differences of gap junctions expressed in HeLa transfectants and Xenopus oocytes. J. Cell Sci. 111, 31–43.

    PubMed  CAS  Google Scholar 

  28. Barrio L. C., Suchyna T., Bargiello T., Xu L. X., Roginski R. S., Bennett M. V., and Nicholson B. J. (1991) Gap junctions formed by connexins 26 and 32 alone and in combination are differently affected by applied voltage. Proc. Natl. Acad. Sci. USA 88, 8410–8414.

    Article  PubMed  CAS  Google Scholar 

  29. Bruzzone R., White T. W., and Paul D. L. (1994) Expression of chimeric connexins reveals new properties of the formation and gating behavior of gap junction channels. J. Cell Sci. 107, 955–967.

    PubMed  CAS  Google Scholar 

  30. Bruzzone R., Haefliger J. A., Gimlich R. L., and Paul D. L. (1993) Connexin 40, a component of gap junctions in vascular endothelium, is restricted in its ability to interact with other connexins. Mol. Biol. Cell 4, 7–20.

    Google Scholar 

  31. White T. W., Bruzzone R., Wolfram S., Paul D. L., and Goodenough D. A. (1994) Selective interactions among the multiple connexin proteins expressed in the vertebrate lens: the second extracellular domain is a determinant of compatibility between connexins. J. Cell Biol. 125, 879–892.

    Article  PubMed  CAS  Google Scholar 

  32. Werner R., Levine E., Rabadan Diehl C., and Dahl G. (1989) Formation of hybrid cell-cell channels. Proc. Natl. Acad. Sci. USA 86, 5380–5384.

    Article  PubMed  CAS  Google Scholar 

  33. White T. W., Paul D. L., Goodenough D. A., and Bruzzone R. (1995) Functional analysis of selective interactions among rodent connexins. Mol. Biol. Cell 6, 459–470.

    PubMed  CAS  Google Scholar 

  34. Bukauskas F. F. and Weingart R. (1995) Gating properties of homo-and heterotypic gap junction channels formed by different mouse connexins, in Proceedings of the 1995 Gap Junction Conference, Ile des Embiez, France.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Bukauskas, F.F. (2001). Inducing De Novo Formation of Gap Juntion Channels. In: Bruzzone, R., Giaume, C. (eds) Connexin Methods and Protocols. Methods In Molecular Biology™, vol 154. Humana Press. https://doi.org/10.1385/1-59259-043-8:379

Download citation

  • DOI: https://doi.org/10.1385/1-59259-043-8:379

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-658-1

  • Online ISBN: 978-1-59259-043-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics