Fluorescence Recovery After Photobleaching

  • Jean Déléze
  • Bruno Delage
  • Olfa Hentati-Ksibi
  • Franck Verrecchia
  • Jean-Claude Hervé
Part of the Methods In Molecular Biology™ book series (MIMB, volume 154)


As was first demonstrated by the cell-to-cell spread of a fluorescent diffusion tracer introduced into one cell by microinjection (1), the permeability of the gap junctions is not restricted to the small intracellular electrolytes that carry the junctional currents. Quantitative data on the permeability of gap junctions for larger solutes, which include second messengers and other signaling molecules, contribute to the understanding of their function. The microinjection method (see Chapter 12) provides information on the presence of functional gap junctions and on the size of the permeating molecules, but permeability coefficients have usually not been obtained with this technique. Indeed, for reasons related to the complex geometry of the diffusion system from one progressively microinjected cell toward a variable number of adjacent and remote cells, long and difficult calculations are involved even in the most simple case of one-dimensional diffusion (2).


Fluorescence Recovery After Photobleaching Fluorescence Recovery Fluorescence Recovery After Photobleaching Experiment Integrate Fluorescence Intensity Remote Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kanno Y. and Loewenstein W. R. (1964) Intercellular diffusion. Science 143, 959–960.PubMedCrossRefGoogle Scholar
  2. 2.
    Brink P. R. and Ramanan S. V. (1985) A model for the diffusion of fluorescent probes in the septate giant axon of earthworm. Axoplasmic diffusion and junctional membrane permeability. Biophys. J. 48, 299–309.PubMedCrossRefGoogle Scholar
  3. 3.
    Peters R., Peters J., Tews K. H., and Bahr W. (1974) A microfluorometric study of translational diffusion in erythrocyte membranes. Biochim. Biophys. Acta 367, 282–294.PubMedCrossRefGoogle Scholar
  4. 4.
    Axelrod D., Koppel D. E., Schlessinger J., Elson E., and Webb W. W. (1976) Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16, 1055–1067.PubMedCrossRefGoogle Scholar
  5. 5.
    Koppel D. E. (1979) Fluorescence redistribution after photobleaching. A new multipoint analysis of membrane translational dynamics. Biophys. J. 28, 281–292.PubMedCrossRefGoogle Scholar
  6. 6.
    Wade M. H., Trosko E. J., and Schindler M. (1986). A fluorescence photobleaching assay of gap junction-mediated communication between human cells. Science 232, 525–528.PubMedCrossRefGoogle Scholar
  7. 7.
    Rotman B. and Papermaster B. W. (1966) Membrane properties of living mammalian cells as studied by enzymatic hydrolysis of fluorogenic esters. Proc. Natl. Acad. Sci. USA 55, 134–141.PubMedCrossRefGoogle Scholar
  8. 8.
    Gribbon P. and Hardingham T. E. (1998) Macromolecular diffusion of biological polymers measured by confocal fluorescence recovery after photobleaching. Biophys. J. 75, 1032–1039.PubMedCrossRefGoogle Scholar
  9. 9.
    Barrows G. H., Sisken J. E., Allegra J. C., and Grasch S. D. (1984) Measurement of fluorescence using digital integration of video images. J. Histochem. Cytochem. 32, 741–746.PubMedGoogle Scholar
  10. 10.
    Schindler M., Trosko J. E., and Wade M. H. (1987) Fluorescence photobleaching assay of tumor promoter 12-O-tetradecanoylphorbol 13-acetate inhibition of cellcell communication. Methods Enzymol. 141, 447-459.Google Scholar
  11. 11.
    Pluciennik F., Joffre M., and Déléze J. (1994) Follicle-stimulating hormone increases gap junction communication in Sertoli cells from immature rat testis in primary culture. J. Membr. Biol. 139, 81–96.PubMedGoogle Scholar
  12. 12.
    Cronier L., Bastide B., Hervé J. C., Déléze J., and Malassine A. (1994) Gap junctional communication during human trophoblast differentiation: influence of human chorionic gonadotrophin. Endocrinology 135, 402–408.PubMedCrossRefGoogle Scholar
  13. 13.
    Burghardt R. C., Barhoumi R., Stickney M., Monga M., Ku C. Y., and Sanborn B. M. (1996) Correlation between connexin43 expression, cell-cell communication, and oxytocin-induced Ca2+ responses in an immortalized human myometrial cell line. Biol. Reprod. 55, 433–438.PubMedCrossRefGoogle Scholar
  14. 14.
    Verrecchia F. and Hervé J. C. (1997) Reversible blockade of gap junctional communication by 2,3-butanedione monoxime in rat cardiac myocytes. Am. J. Physiol. 272, C875–C885.PubMedGoogle Scholar
  15. 15.
    Stein L. S., Boonstra J., and Burghardt R. C. (1992) Reduced cell-cell communication between mitotic and nonmitotic coupled cells. Exp. Cell Res. 198, 1–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Bastide B., JarryGuichard T., Briand J. P., Déléze J., and Gros D. (1996) Effect of antipeptide antibodies directed against three domains of connexin43 on the gap junctional permeability of cultured heart cells. J. Membr. Biol. 150, 243–253.PubMedCrossRefGoogle Scholar
  17. 17.
    Matesic D. F., Hayashi T., Trosko J. E., and Germak J. A. (1996) Upregulation of gap junctional intercellular communication in immortalized gonadotropinreleasing hormone neurons by stimulation of the cyclic AMP pathway. Neuroendocrinology 64, 286–297.PubMedCrossRefGoogle Scholar
  18. 18.
    Cronier L., Hervé J. C., Dél⦕e J., and Malassiné A. (1997) Regulation of gap junctional communication during human trophoblast differentiation. Microsc. Res. Techn. 38, 21–28.CrossRefGoogle Scholar
  19. 19.
    Lin J.H-C., Weigel H., Cotrina M. L., Liu S., Bueno E., Hansen A. J., Hansen T. W., Goldma S., and Nedergaard M. (1998) Gap-junction-mediated propagation and amplification of cell injury. Nat. Neurosci. 1, 494–500.PubMedCrossRefGoogle Scholar
  20. 20.
    Stein L. S., Stein D. W. J., Echols J., and Burghardt R. C. (1993) Concomitant alterations of desmosomes, adhesiveness, and diffusion through gap junction channels in a rat ovarian transformation model system. Exp. Cell Res. 207, 19–32.PubMedCrossRefGoogle Scholar
  21. 21.
    Elfgang C., Eckert R., Lichtenbergfrate H., Butterweck A., Traub O., Klein R. A., Hülser D. F., and Willecke K. (1995) Specific permeability and selective formation of gap junction channels in connexin-transfected HeLa cells. J. Cell Biol. 129, 805–817.PubMedCrossRefGoogle Scholar
  22. 22.
    Bastide B., Hervé J. C., Cronier L., and Déléze J. (1995) Rapid onset and calcium independence of the gap junction uncoupling induced by heptanol in cultured heart cells. Pflügers Archiv. 429, 386–393.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Jean Déléze
    • 1
  • Bruno Delage
    • 1
  • Olfa Hentati-Ksibi
    • 1
  • Franck Verrecchia
    • 1
  • Jean-Claude Hervé
    • 1
  1. 1.Laboratoire de Physiologie CellulaireUniversité de PoitiersPoitiersFrance

Personalised recommendations