Skip to main content

NPY Antisense Oligodeoxynucleotides to Study the Actions of NPY

  • Protocol
  • 303 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 153))

Abstract

Antisense oligodeoxynucleotides (ODN) that disrupt gene function, leading eventually to a reduction in levels of the encoded protein, are powerful molecular tools for studying the functions of neuropeptides and their receptors in the brain. Their potential usefulness is even greater for the ever increasing number of newly discovered peptide and receptor genes expressed in the central nervous system for which pharmacological blocking agents or selective ligands may not be available. Generally, antisense ODNs are short DNA sequences complementary to a specific mRNA that has the same sequence as the sense DNA strand. Although the mechanisms of antisense action are not fully understood, it prevents translation of the mRNA into protein by action at any one of several sites in the sequence of events from DNA to protein synthesis. This inhibition may occur (1) by binding to DNA to form a triple-helical structure; (2) by simply hybridizing to the target RNA and thus preventing its interaction with ribosomes, polymerases, and so forth; and (3) by binding to mRNA to provide a substrate for enzymes such as RNase-H that cleave and degrade the mRNA and prevent protein expression. Additionally, there is evidence that antisense ODNs may bind directly to the target proteins, resulting in its inhibition. The latter effect (referred to as aptomer binding) occurs in a non-antisense manner, however, inhibition of a specific protein may be useful from a therapeutic point of view. Whatever may be the mechanism of antisense ODN action, it is a powerful alternative approach to assess protein function, especially in the absence of pharmacological blockers.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Chronwall B. M. (1985) Anatomy and physiology of the neuroendocrine arcuate nucleus. Peptides 2, 1–11.

    Article  Google Scholar 

  2. Kalra S. P. and Kalra P. S. (1996) Nutritional infertility: the role of the interconnected hypothalamic neuropeptide Y-galanin-opioid network. Front. Neuroendocrinol. 17, 371–401.

    Article  PubMed  CAS  Google Scholar 

  3. Clark J. T., Kalra P. S., Crowley W. R., and Kalra S. P. (1984) Neuropeptide Y and human pancreatic polypeptide stimulate feeding behavior in rats. Endocrinology 115, 427–429.

    Article  PubMed  CAS  Google Scholar 

  4. Stanley B. G., Chin A. S., and Leibowitz S. F. (1985) Feeding and drinking elicited by central injection of neuropeptide Y: evidence for a hypothalamic site(s) of action. Brain Res. Bull. 14, 521–524.

    Article  PubMed  CAS  Google Scholar 

  5. Ciofi P., Fallon J. H., Croix D., Polak J. M., and Tramu G. (1991) Expression of neuropeptide Y precursor-immunoreactivity in the hypothalamic dopaminergic tubero-infundibular system during lactation in rodents. Endocrinology 128, 823–834.

    Article  PubMed  CAS  Google Scholar 

  6. Smith M. S. (1993) Lactation alters neuropeptide-Y and proopiomelanocortin gene expression in the arcuate nucleus of the rat. Endocrinology 133, 1258–1265.

    Article  PubMed  CAS  Google Scholar 

  7. Williams G., Gill J. S., Lee Y. C., Cardoso H. M., Okpere B. E., and Bloom S. R. (1989) Increased neuropeptide Y concentrations in specific hypothalamic regions of streptozocin-induced diabetic rats. Diabetes 38, 321–327.

    Article  PubMed  CAS  Google Scholar 

  8. Sahu A., Sninsky C. A., Kalra P. S., and Kalra S. P. (1990) Neuropeptide-Y concentration in microdissected hypothalamic regions and in vitro release from the medial basal hypothalamus-preoptic area of streptozotocin-diabetic rats with and without insulin substitution therapy. Endocrinology 126, 192–198.

    Article  PubMed  CAS  Google Scholar 

  9. Sahu A., Kalra P. S., and Kalra S. P. (1988) Food deprivation and ingestion induce reciprocal changes in neuropeptide Y concentrations in the paraventricular nucleus. Peptides 9, 83–86.

    Article  PubMed  CAS  Google Scholar 

  10. Brady L. S., Smith M. A., Gold P. W., and Herkenham M. (1990) Altered expression of hypothalamic neuropeptide mRNAs in food-restricted and fooddeprived rats. Neuroendocrinology 52, 441–447.

    Article  PubMed  CAS  Google Scholar 

  11. Sahu A., White J. D., Kalra P. S., and Kalra S. P. (1992) Hypothalamic neuropeptide Y gene expression in rats on scheduled feeding regimen. Brain Res. Mol. Brain Res. 15, 15–18.

    Article  PubMed  CAS  Google Scholar 

  12. Crowley W. R. and Kalra S. P. (1987) Neuropeptide Y stimulates the release of luteinizing hormone-releasing hormone from medial basal hypothalamus in vitro: modulation by ovarian hormones. Neuroendocrinology 46, 97–103.

    Article  PubMed  CAS  Google Scholar 

  13. Whitesell L., Geselowitz D., Chavany C., Fahmy B., Walbridge S., Alger J. R., et al. (1993) Stability, clearance, and disposition of intraventricularly administered oligodeoxynucleotides: implications for therapeutic application within the central nervous system. Proc. Natl. Acad. Sci. USA 90, 4665–4669.

    Article  PubMed  CAS  Google Scholar 

  14. Allen J., Novotny J., Martin J., and Heinrich G. (1987) Molecular structure of mammalian neuropeptide Y: analysis by molecular cloning and computer-aided comparison with crystal structure of avian homologue. Proc. Natl. Acad. Sci. USA 84, 2532–2536.

    Article  PubMed  CAS  Google Scholar 

  15. McCarthy M. M., Brooks P. J., Pfaus J., Brown H. E., Flanagan L. M., Schwartz-Giblin S.,et al. (1993) Antisense technology in behavioral neuroscience. Neuroprotocols 2, 67–76.

    Article  CAS  Google Scholar 

  16. Gao W. Y., Han F. S., Storm C., Egan W., and Cheng Y. C. (1992) Phosphorothioate oligonucleotides are inhibitors of human DNA polymerases and RNase H: implications for antisense technology. Mol. Pharmacol. 41, 223–229.

    PubMed  CAS  Google Scholar 

  17. Wahlestedt C. (1994) Antisense oligonucleotide strategies in neuropharmacology. Trends Pharmacol. Sci. 15, 42–46.

    Article  PubMed  CAS  Google Scholar 

  18. Russell D., Widnell K. L., and Nestler E. J. (1996) Antisense oligonucleotides: new tools for the study of brain function. Neuroscientist 2, 79–82.

    Article  CAS  Google Scholar 

  19. Dryden S., Pickavance L., Tidd D., and Williams G. (1998) The lack of specificity of neuropeptide Y (NPY) antisense oligodeoxynucleotides administered intracerebroventricularly in inhibiting food intake and NPY gene expression in the rat hypothalamus. J. Endocrinol. 157, 169–175.

    Article  PubMed  CAS  Google Scholar 

  20. Neckers L. M., Geselowitz D., Clavany C., Whitesell L., and Bergen R. (1995) Antisense efficacy: Site-restricted in vivo and ex vivo models, in Methods in Molecular Medicine: Antisense Therapeutics, vol. I (Agrawal S., ed.), Humana Totowa, NJ, pp. 47–56.

    Google Scholar 

  21. Kalra P. S., Bonavera J. J., and Kalra S. P. (1995) Central administration of antisense oligodeoxynucleotides to neuropeptide Y (NPY) mRNA reveals the critical role of newly synthesized NPY in regulation of LHRH release. Regul. Pept. 59, 215–220.

    Article  PubMed  CAS  Google Scholar 

  22. Xu B., Sahu A., Kalra P. S., Crowley W. R., and Kalra S. P. (1996) Disinhibition from opioid influence augments hypothalamic neuropeptide Y (NPY) gene expression and pituitary luteinizing hormone release: effects of NPY messenger ribonucleic acid antisense oligodeoxynucleotides. Endocrinology 137, 78–84.

    Article  PubMed  CAS  Google Scholar 

  23. Xu B., Pu S., Sahu A., Kalra P. S., Hyde J. F., Crowley W. R., et al. (1996) An interactive physiological role of neuropeptide Y and galanin in pulsatile pituitary luteinizing hormone secretion. Endocrinology 137, 5297–5302.

    Article  PubMed  CAS  Google Scholar 

  24. Kalra P. S., Dube M. G., and Kalra S. P. (1999) Effects of centrally adminisitered antisense oligodeoxynucleotides on feeding behavior and hormone secretion, in Methods in Enzymology, vol. 314B, (Phillips M. I, ed.), Academic San Diego, CA, pp. 184–200.

    Google Scholar 

  25. Sahu A., Jacobson W., Crowley W. R., and Kalra S. P. (1989) Dynamic changes in neuropeptide Y concentrations in the median eminence in association with preovulatory luteinizing hormone (LH) release in the rat. J. Neuroendocrinol. 1, 83–87.

    Article  PubMed  CAS  Google Scholar 

  26. Sahu A., Crowley W. R., and Kalra S. P. (1995) Evidence that hypothalamic neuropeptide Y gene expression increases before the onset of the preovulatory LH surge. J. Neuroendocrinol. 7, 291–296.

    Article  PubMed  CAS  Google Scholar 

  27. Sahu A., Crowley W. R., and Kalra S. P. (1994) Hypothalamic neuropeptide-Y gene expression increases before the onset of the ovarian steroid-induced luteinizing hormone surge. Endocrinology 134, 1018–1022.

    Article  PubMed  CAS  Google Scholar 

  28. Sahu A., Phelps C. P., White J. D., Crowley W. R., Kalra S. P., and Kalra P. S. (1992) Steroidal regulation of hypothalamic neuropeptide Y release and gene expression. Endocrinology 130, 3331–3336.

    Article  PubMed  CAS  Google Scholar 

  29. Hulsey M. G., Pless C. M., White B. D., and Martin R. J. (1995) ICV administration of anti-NPY antisense oligonucleotide: effects on feeding behavior, body weight, peptide content and peptide release. Regul. Pept. 59, 207–214.

    Article  PubMed  CAS  Google Scholar 

  30. Akabayashi A., Wahlestedt C., Alexander J. T., and Leibowitz S. F. (1994) Specific inhibition of endogenous neuropeptide Y synthesis in arcuate nucleus by antisense oligonucleotides suppresses feeding behavior and insulin secretion. Brain Res. Mol. Brain Res. 21, 55–61.

    Article  PubMed  CAS  Google Scholar 

  31. Schaffhauser A. O., Sricker-Krongrad A., Brunner L., Cumin F., Gerald G., Whitebread S., et al. (1997) Inhibition of food intake by neuropeptide Y5 antisense oligodeoxynucleotides. Diabetes 46, 1792–1798.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Kalra, P.S., Kalra, S.P. (2000). NPY Antisense Oligodeoxynucleotides to Study the Actions of NPY. In: Balasubramaniam, A. (eds) Neuropeptide Y Protocols. Methods in Molecular Biology™, vol 153. Humana Press. https://doi.org/10.1385/1-59259-042-X:151

Download citation

  • DOI: https://doi.org/10.1385/1-59259-042-X:151

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-662-8

  • Online ISBN: 978-1-59259-042-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics