Skip to main content

Using Rapid Amplification of cDNA Ends (RACE) to Obtain Full-Length cDNAs

  • Protocol
The Nucleic Acid Protocols Handbook

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 363 Accesses

Abstract

Most attempts to identify and isolate a novel cDNA result in the acquisition of clones that represent only a part of the mRNA’s complete sequence (Fig. 1). The approach described here to clone the missing sequence (cDNA ends) employs polymerase chain reaction (PCR). Since the initial reports of rapid amplification of cDNA ends (RACE) (1) or related techniques (2,3), many labs have developed significant improvements on the basic approach (418). The most recent hybrid version of the relatively simple Classic RACE will be described here, as well as a more powerful but technically more challenging “New RACE” protocol, which is adapted from the work of a number of laboratories (1926). Commercial RACE kits are available from Bethesda Research Laboratories (Gaithersburg, MD) (11) and Clontech (Palo Alto, CA) that are convenient but not as powerful as the most recent versions of Classic and New RACE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frohman, M. A., Dush, M. K., and Martin, G. R. (1988) Rapid production of full-length cDNAs from rare transcripts by amplification using a single gene-specific oligonucleotide primer. Proc. Natl Acad. ScL USA 85, 8998–9002.

    Article  CAS  Google Scholar 

  2. Loh, E. L., Elliott, J. F., Cwirla, S., Lanier, L. L., and Davis, M. M. (1989) Polymerase chain reaction with single sided specificity: analysis of T cell receptor delta chain. Science 243, 217–220.

    Article  PubMed  CAS  Google Scholar 

  3. Ohara, O., Dorit, R. I., and Gilbert, W. (1989) One-sided PCR: the amplification of cDNA. Proc. Natl. Acad. Sci. USA 86, 5673–5677.

    Article  PubMed  CAS  Google Scholar 

  4. Frohman, M. A. (1989) Creating full-length cDNAs from small fragments of genes: amplification of rare transcripts using a single gene-specific oligonucleotide primer, in PCR Protocols and Applications: A Laboratory Manual (Innis, M., Gelfand, D., Sninsky, J., and White, T., eds.), pp. 28–38.

    Google Scholar 

  5. Frohman, M. A. and Martin, G. R. (1989) Rapid amplification of cDNA ends using nested primers. Techniques 1, 165–173.

    Google Scholar 

  6. Dumas, J. B., Edwards, M., Delort, J., and Mallet, J. (1991) Oligodeoxyribonucleotide ligation to single-stranded cDNAs: a new tool for cloning 5′ ends of mRNAs and for constructing cDNA libraries by in vitro amplification. Nucleic Acids Res. 19, 5227–5233.

    Article  Google Scholar 

  7. Fritz, J. D., Greaser, M. L., and Wolff, J. A. (1991) A novel 3′ extension technique using random primers in RNA-PCR. Nucleic Acids Res. 119, 3747.

    Article  Google Scholar 

  8. Borson, N. D., Salo, W. L., and Drewes, L. R. (1992) A lock-docking oligo(dT) primer for 5′ and 3′ RACE PCR. PCR Methods Applic. 2, 144–148.

    Article  CAS  Google Scholar 

  9. Jain, R., Gomer, R. H., and Murtagh, J. J. J. (1992) Increasing specificity from the PCR-RACE technique. BioTechniques 12, 58,59.

    PubMed  CAS  Google Scholar 

  10. Rashtchian, A., Buchman, G. W., Schuster, D. M., and Berninger, M. S. (1992) Uracil DNA glycosylase-mediated cloning of PCR-amplified DNA: application to genomic and cDNA cloning. Anal. Biochem. 206, 91–97.

    Article  PubMed  CAS  Google Scholar 

  11. Schuster, D. M., Buchman, G. W., and Rastchian, A. (1992) A simple and efficient method for amplification of cDNA ends using 5′ RACE. Focus 14, 46–52.

    Google Scholar 

  12. Bertling, W. M., Beier, F., and Reichenberger, E. (1993) Determination of 5* ends of specific mRNAs by DNA ligase-dependent amplification. PCR Methods Applic. 3, 95–99.

    Article  CAS  Google Scholar 

  13. Frohman, M. A. (1993) Rapid amplification of cDNA for generation of full-length cDNA ends: thermal RACE. Methods Enzymol. 218, 340–356.

    Article  PubMed  CAS  Google Scholar 

  14. Monstein, H. J., Thorup, J. U., Folkesson, R., Johnsen, A. H., and Rehfeld, J. F. (1993) cDNA deduced procionin—structure and expression in protochordates resemble that of procholecystokinin in mammals. FEBS Lett. 331, 60–64.

    Article  PubMed  CAS  Google Scholar 

  15. Templeton, N. S., Urcelay, E., and Safer, B. (1993) Reducing artifact and increasing the yield of specific DNA target fragments during PCR-RACE or anchor PCR. BioTechniques 15, 48–50.

    PubMed  CAS  Google Scholar 

  16. Frohman, M. A. (1994) Cloning PCR products: strategies and tactics, in PCR. The Poly-merase Chain Reaction. Methods in Molecular Biology Series (Mullis, K. B., Ferre, F., and Gibbs, R. A., eds.), pp. 14–37.

    Google Scholar 

  17. Datson, N. A., Duyk, G. M., Van Ommen, J. B., and Den Dunnen, J. T. (1994) Specific isolation of 3′-terminal exons of human genes by exon trapping. Nucleic Acids Res. 22, 4148–4153.

    Article  PubMed  CAS  Google Scholar 

  18. Ruberti, F., Cattaneo, A., and Bradbury, A. (1994) The use of the RACE method to clone hybridoma cDNA when V region primers fail. J. Immunol. Methods 173, 33–39.

    Article  PubMed  CAS  Google Scholar 

  19. Tessier, D. C., Brousseau, R., and Vernet, T. (1986) Ligation of single-stranded oligodeoxyribonucleotides by T4 RNA ligase. Anal. Biochem. 158, 171–178.

    Article  PubMed  CAS  Google Scholar 

  20. Mandl, C. W., Heinz, F. X., Puchhammer-Stockl, E., and Kunz, C. (1991) Sequencing the termini of capped viral RNA by 5′–3′ ligation and PCR. BioTechniques 10, 484–486.

    PubMed  CAS  Google Scholar 

  21. Volloch, V., Schweizer, B., Zhang, X., and Rits, S. (1991) Identification of negative-strand complements to cytochrome oxidase subunit III RNA in Trypanosoma brucei. Biochemistry 88, 10,671–10,675.

    CAS  Google Scholar 

  22. Brock, K. V., Deng, R., and Riblet, S. M. (1992) Nucleotide sequencing of 5′ and 3′ termini of bovine viral diarrhea virus by RNA ligation and PCR. Virol. Methods 38, 39–46.

    Article  CAS  Google Scholar 

  23. Bertrand, E., Fromont-Racine, M., Pictet, R., and Grange, T. (1993) Visualization of the interaction of a regulatory protein with RNA in vivo. Proc. Natl. Acad. Sci. USA 90, 3496–3500.

    Article  PubMed  CAS  Google Scholar 

  24. Fromont-Racine, M., Bertrand, E., Pictet, R., and Grange, T. (1993) A highly sensitive method for mapping the 5′ termini of mRNAs. Nucleic Acids Res. 21, 1683,1684.

    Article  PubMed  CAS  Google Scholar 

  25. Liu, X. and Gorovsky, M. A. (1993) Mapping the 5′ and 3′ ends of tetrahymena-thermophila mRNAs using RNA ligase mediated amplification of cDNA ends (RLM-RACE). Nucleic Acids Res. 21, 4954–4960.

    Article  PubMed  CAS  Google Scholar 

  26. Sallie, R. (1993) Characterization of the extreme 5′ ends of RNA molecules by RNA ligation-PCR. PCR Methods Applic. 3, 54–56.

    Article  CAS  Google Scholar 

  27. Skinner, T. L., Kerns, R. T., and Bender, P. K. (1994) Three different calmodulin-encoding cDNAs isolated by a modified 5′-RACE using degenerate oligodeoxyribonucleotides. Gene 151, 247–251.

    Article  PubMed  CAS  Google Scholar 

  28. Frohman, M. A., Dickinson, M. E., Hogan, B. L. M., and Martin, G. R. (1993) Localization of two new and related homeobox-containing genes to chromosomes 1 and 5, near the phenotypically similar mutant loci dominant hemimelia (Dh) and hemimelic extra-toes (Hx). Mouse Genome 91, 323–325.

    Google Scholar 

  29. Crowe, J. S., Cooper, H. J., Smith, M. A., Sims, M. J., Parker, D., and Gewert, D. (1991) Improved cloning efficiency of polymerase chain reaction (PCR) products after proteinase K digestion. Nucleic Acids Res. 19, 184.

    Article  PubMed  CAS  Google Scholar 

  30. Coleclough, C. (1987) Use of primer-restriction end adapters in cDNA cloning. Methods Enzymol. 154, 64–83.

    Article  PubMed  CAS  Google Scholar 

  31. Don, R. H., Cox, P. T., Wainwright, B. J., Baker, K., and Mattick, J. S. (1991) Touchdown PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res. 19, 4008.

    Article  PubMed  CAS  Google Scholar 

  32. Mead, D. A., Pey, N. K., Herrnstadt, C., Marcil, R. A., and Smith, L. A. (1991) A universal method for direct cloning of PCR amplified nucleic acid. Biotechnology 9, 657–663.

    Article  PubMed  CAS  Google Scholar 

  33. Marchuk, D., Drumm, M., Saulino, A., and Collins, F. S. (1991) Construction of T-vector, a rapid and general system for direct cloning of unmodified PCR products. Nucleic Acids Res. 19, 1154.

    Article  PubMed  CAS  Google Scholar 

  34. Kovalic, D., Kwak, J. H., and Weisblum, B. (1991) General method for direct cloning of DNA fragments generated by the polymerase chain reaction. Nucleic Acids Res. 19, 4650.

    Article  Google Scholar 

  35. Holton, T. A. and Graham, M. W. (1991) A simple and efficient method for direct cloning of PCR products using ddT-tailed vectors. Nucleic Acids Res. 19, 1156.

    Article  PubMed  CAS  Google Scholar 

  36. Stoker, A. W. (1990) Cloning of PCR products after defined cohesive termini are created with T4 DNA polymerase. Nucleic Acids Res. 18, 4290.

    Article  PubMed  CAS  Google Scholar 

  37. Iwahana, H., Mizusawa, N., Ii, S., Yoshimoto, K., and Itakura, M. (1994) An end-trimming method to amplify adjacent cDNA fragments by PCR. BioTechniques 16, 94–98.

    PubMed  CAS  Google Scholar 

  38. Thweatt, R., Goldstein, S., and Reis, R. J. S. (1990) A universal primer mixture for sequence determination at the 3′ ends of cDNAs. Anal. Biochem. 190, 314.

    Article  PubMed  CAS  Google Scholar 

  39. Eckert, K. A. and Kunkel, T. A. (1990) High fidelity DNA synthesis by the Thermus aquaticus DNA polymerase. Nucleic Acids Res. 18, 3739–3745.

    Article  PubMed  CAS  Google Scholar 

  40. Sambrook, J., Fritsch, E. F., and Maniatis, T. (eds.) (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Lab. Press, Cold Spring Harbor, NY, pp. 82,83.

    Google Scholar 

  41. Sarker, G., Kapelner, S., and Sommer, S. S. (1990) Formamide can dramatically improve the specificity of PCR. Nucleic Acids Res. 18, 7465.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Zhang, Y., Frohman, M.A. (2000). Using Rapid Amplification of cDNA Ends (RACE) to Obtain Full-Length cDNAs. In: Rapley, R. (eds) The Nucleic Acid Protocols Handbook. Springer Protocols Handbooks. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-038-1:267

Download citation

  • DOI: https://doi.org/10.1385/1-59259-038-1:267

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-459-4

  • Online ISBN: 978-1-59259-038-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics