Skip to main content

Nutritional Status of Grape Juice

  • Protocol
Food Microbiology Protocols

Part of the book series: Methods in Biotechnology ((MIBT,volume 14))

Abstract

The chemical and physical environment of grape juice during fermentation, coupled with competition from indigenous yeast and bacteria, can present significant challenges to the growth of Saccharomyces cerevisiae. Individually or collectively, these factors may impact both yeast growth and the conversion rate of sugar to alcohol, leading not only to the formation of objectionable odor- and flavor-active metabolites but, potentially, protracted, incomplete, or “stuck” fermentations as well. Sluggish and stuck fermentations can be described as those where the rate of sugar utilization is extremely slow, especially near the end, and/or where residual fermentable sugar is left in the wine. Such wines create significant management problems. Table wines containing biologically available levels of sugar (>-0.2% w/v glucose + fructose) may undergo spontaneous refermentation. Further, unexpectedly sweet wines may be an unacceptable departure from wine style.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salmon J. M. (1989) Effect of sugar transportation inactivation in Saccharomyces cerevisiae on sluggish and stuck enological fermentations. Appl. Environ.Microbiology 55, 9536–9538.

    Google Scholar 

  2. Lagunas R. (1993) Sugar transport in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 104, 229–242.

    Article  CAS  Google Scholar 

  3. Cirillo V. P. (1962) Mechanism of glucose transport across the yeast cell membrane. J. Bacteriol. 84, 485–491.

    PubMed  CAS  Google Scholar 

  4. Salmon J. M. (1997) Enological fermentation: kinetics of an isogenic ploidy series derived from an industrial Saccharomyces cerevisiae strain. J. Ferm. Bioeng. 83, 253–260.

    Article  CAS  Google Scholar 

  5. Lafon-Lafourcade S. and Ribereau-Gayon P. (1984) Developments in the microbiology of wine production. Prog. Ind. Microbiol. 19, 1–45.

    CAS  Google Scholar 

  6. Fleet G. H. and Heard G. M. (1993) Yeasts-growth during fermentation in Wine Microbiology and Biotechnology (Fleet G. H., ed.), Harwood Academic, Australia, pp. 27–54.

    Google Scholar 

  7. Sponholz W. R. (1991) Nitrogen compounds in grapes, must, and wine in International Symposium on Nitrogen in Grapes and Wine (Rantz J., ed.) American Society for Enology and Viticulture, Davis, CA, pp.67–77.

    Google Scholar 

  8. Zoecklein B. W., Fugelsang K. C., Gump B. H., and Nury F. S. (1995) Wine Analysis and Production. Chapman & Hall, New York.

    Google Scholar 

  9. Monk P. R. (1986) Rehydration and propagation of active dry wine yeasts. Austral. Wine Ind. J. 1(1), 3–5.

    Google Scholar 

  10. Correa I., Polo M. C., Amigo L., and Ramos M. (1988) Separation des proteines des mouts de raison au moyen de techniques electrophoretiques. Bull. OIV. 39, 1475–1489.

    Google Scholar 

  11. Rosi I., Costamagna L., and Bertuccioli M. (1987) Screening for extracellular acid protease(s) production by wine yeasts. J. Inst. Brew. 93, 322–224.

    CAS  Google Scholar 

  12. Lagace L. S. and Bisson L. F. (1990) Survey of yeast acid proteases for effectiveness of wine haze reduction. Am. J. Enol. Vitic. 41, 1246–1249.

    Google Scholar 

  13. Dukes B. C. and Butzke C. E. (1998) Rapid determination of primary amino acids in grape juice using an o-phthaldiadehyde/N-acetyl-L-cysteine spectrophotometric assay. Am. J. Enol. Vitic. 49, 125–134.

    CAS  Google Scholar 

  14. Henick-Kling T., Edinger W. D., and Larsson-Kovach I.-M. (1996) Survey of available nitrogen for yeast growth in New York grape musts. Wein-Wissensch. 51(3), 169–174.

    CAS  Google Scholar 

  15. Sablayroles J. M. (1996) Sluggish and stuck fermentations. Effectiveness of ammonium nitrogen and oxygen additions. Wein-Wissensch 51(3), 147–151.

    Google Scholar 

  16. Ough C. S. (1969) Substances extracted during skin contact with white must. I. General wine composition and quality changes with contact time. Am. J. Enol. Vitic. 20, 93–100.

    CAS  Google Scholar 

  17. Jiranek V., Langridge P., and Henschke P. A. (1990) Nitrogen requirement of yeast during wine fermentation in Proceedings of the Seventh Australian Wine Industry Technical Conference (Williams P. J., Davidson D. M., and Lee T. H., eds.), Australian Industrial Publishers, Adelaide, pp. 166–171.

    Google Scholar 

  18. Monk P.R., Hook D., and Freeman B. M. (1987) Amino acid metabolism by yeast in Proceedings of the Sixth Australian Wine Industry Technical Conference (Lee T. H., ed.) Australian Industrial Publishers, Adelaide, pp. 129–133.

    Google Scholar 

  19. Wurdig G. and Woller R. (1989) Chemie des Weines. Handbuch der Lebensmittel-technologie. Ulmer, Stuttgart.

    Google Scholar 

  20. Henschke P. A. and Jiranek V. (1993) Metabolism of nitrogen compounds in Wine Microbiology and Biotechnology (Fleet G. H., ed.) Harwood Academic, St. Leonards NSW, Australia, pp. 27–54.

    Google Scholar 

  21. Bely M., Sablayrolles J-M., and Barre P. (1990) Automatic detection of assimilable nitrogen deficiencies during alcoholic fermentation in oenological conditions. J. Ferment. Bioeng. 70(4), 246–252.

    Article  CAS  Google Scholar 

  22. Bely M., Sablayrolles J. M., and Barre P. (1991) Automatic detection and correction of assimilable nitrogen deficiencies during alcoholic fermentation in enological conditions in Proceedings of the International Symposium on Nitrogen in Grapes and Wine (Rantz J., ed.) American Society for Enology and Viticulture, Davis, CA, pp. 211–214.

    Google Scholar 

  23. Dittrich H. H. (1987) Mikrobiologie des Weines.Handbuch der Lebensmitteltechnologie, 2nd ed. Ulmer, Stuttgart.

    Google Scholar 

  24. Fugelsang K. C. (1996) Wine Microbiology. Chapman & Hall, New York.

    Google Scholar 

  25. Grenson M., Hou C., and Crabeel M. (1970) Multiplicity of amino acid permeases in Saccharomyces cerevisiae. IV. Evidence for a general amino acid permease. J. Bacteriol. 103, 770–777.

    PubMed  CAS  Google Scholar 

  26. Woodward J. R. and Cirillo P. V. (1997) Amino acid transport and metabolism in nitrogen-starved cells of Saccharomyces cerevisiae. J. Bacteriol. 130, 714–723.

    Google Scholar 

  27. Castor J. G. B. (1953) The free amino acids of musts and wines. II. The fate of amino acids of must during alcoholic fermentation. J. Food Res. 18, 146–151.

    CAS  Google Scholar 

  28. Ingledew W. M. and Kunkee R. E. (1985) Factors influencing sluggish fermentations of grape juice. Am. J. Enol. Vitic. 36, 65–76.

    CAS  Google Scholar 

  29. Bisson L. F. (1991) Influence of nitrogen on yeast and fermentation of grapes, in Proceedings of the International Symposium on Nitrogen in Grapes and Wine (Seattle) (Rantz J., ed.), American Society for Enology and Viticulture, Davis, CA, pp. 78–89.

    Google Scholar 

  30. Monteiro F. F. and Bisson L. F. (1991) Biological assay of nitrogen content of grape juice and prediction of sluggish fermentations. Am. J. Enol. Vitic. 42(1), 47–57.

    CAS  Google Scholar 

  31. Monteiro F. F. and Bisson L. F. (1992a) Nitrogen supplementation of grape juice. I. Effect on amino acid utilization during fermentation. Am. J. Enol. Vitic. 43(1), 1–10.

    Google Scholar 

  32. Monteiro F. F. and Bisson L. F. (1992b) Nitrogen supplementation of grape juice. II. Effect on amino acid and urea release following fermentation. Am. J. Enol. Vitic. 43, 11–17.

    Google Scholar 

  33. Ough C. S. (1968) Proline content of grapes and wine. Vitis 7, 321–331.

    CAS  Google Scholar 

  34. Ingledew W. M. (1996) Nutrients, yeast hulls and proline in wine fermentation. Wein-Wissensch. 51, 141–146.

    CAS  Google Scholar 

  35. Manginot C. and Sablayrolles J. M. (1997) Use of constant rate alcoholic fermentations to compare the effectiveness of different nitrogen sources added during the stationary phase. Enzyme Microbial. Tech. 20, 373–380.

    Article  CAS  Google Scholar 

  36. Watson T. G. (1976) Amino acid pool composition of Saccharomyces cerevisiae as a function of growth rate and amino acid nitrogen source. J. Gen. Microbiol. 96, 263–268.

    PubMed  CAS  Google Scholar 

  37. Cooper T. G. (1982) Nitrogen metabolism in Saccharomyces cerevisiae in The Molecular Biology of the Yeast Sacchromyces (Strathern J. N., Jones E. W., and Broach J. B., eds.), Cold Spring Harbor Laboratory, New York, pp. 39–99.

    Google Scholar 

  38. Large P. J. (1986) Degradation of organic nitrogen compounds by yeasts. Yeast 2, 1–34.

    Article  CAS  Google Scholar 

  39. Tokuyama T., Kuraishi H., Aida K., and Uemura T. (1973) Hydrogen sulfide evolution due to pantothenic acid deficiency in the yeast requiring this vitamin, with special reference to the effect of adenosine triphosphate on yeast cysteine desulfhydrase. J. Gen. Appl. Microbiol. 19, 439–466.

    Article  CAS  Google Scholar 

  40. Maw G. A. (1965) The role of sulfur in yeast growth and in brewing. Wallerstein Lab. Commun. 21, 49–68.

    Google Scholar 

  41. Huang Z. and Ough C. S. (1989) Effect of vineyard location, varieties and woodstocks on the juice amino acid composition of several cultivars. Am. J. Enol. Vitic., 40, 135–139.

    CAS  Google Scholar 

  42. Huang Z. and Ough C. S. (1991) Amino acid profiles of commercial grape juices and wines. Am. J. Enol. Vitic. 42, 261–267.

    CAS  Google Scholar 

  43. Ough C. S. and Tabacman H. (1979) Gas chromatographic determinations of amino acid differences in Cabernet Sauvignon grapes and wines as affected by rootstocks. Am. J. Enol. Vitic. 30, 306–311.

    CAS  Google Scholar 

  44. Etievant P., Schlich P., Bouvier J.-C., Symonds P., and Bertrand A. (1988) Varietal and geographical classification of French red wines in terms of elements, amino acids and aromatic alcohols. J. Scie. FoodAgric. 45, 25–41.

    Article  CAS  Google Scholar 

  45. Bell S. J. (1991) The effect of nitrogen fertilization on growth, yield, and juice composition of Vitis vinifera cv. Cabernet Suavignon grapevines in Proceedings of the International Symposium on Nitrogen in Grapes and Wine (Seattle) (Rantz J., ed.), American Society for Enology and Viticulture, Davis, CA, pp. 206–210.

    Google Scholar 

  46. Bell A. A., Ough C. S., and Kliewer W. M. (1979) Effects on must and wine composition, rates of fermentation and wine quality of nitrogen nitrogen fertilization of Vitis vinifera var. Thompson seedless grapevines. Am. J. Enol. Vitic. 30, 124–129.

    CAS  Google Scholar 

  47. Ough C. S. and Bell A. A. (1980) Effects of nitrogen fertilization of grapevines on amino acid metabolism and higher alcohol formation during grape juice fermentation. Am. J. Enol. Vitic., 31, 122–123.

    CAS  Google Scholar 

  48. Butzke C. E. (1998). Survey of yeast assimilable nitrogen status in musts from California, Oregon and Washington. Am. J. Enol. Vitic. 49, 220–224.

    CAS  Google Scholar 

  49. Dittrich H. H. and Sponholz W. R. (1975) Die aminosaureabnahme in Botrytisinfizierten Traubenbeeren und die bildung hoherer alhohole in deisen Mosten bei ihrer vergarung. Wein-Wissensch. 30, 188–210.

    Google Scholar 

  50. Ferenczy S. (1966) Etude des proteines et des substances azotees. Leur evolution au cours des traitements oenologiques. Conditions de la stabilite proteique des vins. Bull. OIV 39, 1311–1336.

    Google Scholar 

  51. Houtman A. C. and duPleissis C. S. (1981) The effect of juice clarity and several conditions promoting yeast growth on fermentation rate, the production of aroma components and wine quality. S. Afr. J. Enol. Vitic. 2, 71–81.

    CAS  Google Scholar 

  52. Guitart A., Orte P. H., and Cacho J. (1998) Effect of different clarification treatments on the amino acid content of Chardonnay musts and wines. Am. J. Enol. Vitic. 49(4), 389–396.

    CAS  Google Scholar 

  53. Koch J. (1963) Proteines des vins blancs. Traitements des precipitations proteiques par chauffage et a l’aide de la bentonite. Ann. Technol. Agric. 12, 297–313.

    CAS  Google Scholar 

  54. Rapp A. (1977) Uber den Gehalt der Aminosauren in Weinbeeren, Traubenmost und Wein, Bundesausschuß fur Weinforschung, Germany, pp. 136–151.

    Google Scholar 

  55. Rapp A. and Versini G. (1991) Influence of nitrogen compounds in grapes on aroma compounds in wine in Proceedings of the International Symposium on Nitrogen in Grapes and Wine (Rantz J., ed.), American Society for Enology and Viticulture, Davis, CA, pp. 156–164.

    Google Scholar 

  56. Monteiro F. F., Trousdale E. K., and Bisson L. F. (1989) Ethyl carbamate formation in wine: Use of radioactively labeled precursors to demonstrate the involvement of urea. Am. J. Enol. Vitic. 40, 1–8.

    Google Scholar 

  57. Stevens D. F. and Ough C. S. (1993). Ethyl carbamate formation: reaction of urea and citrulline with ethanol in wine under low to normal temperature conditions. Am. J. Enol. Vitic. 44, 309–312.

    CAS  Google Scholar 

  58. Ough C. S. (1993) Report on ethyl carbamate for the Wine Institute. Ethyl carbamate/urease enzyme preparation. A compendium from June, 1993 seminars.

    Google Scholar 

  59. An D. and Ough C. S. (1993) Urea excretion and uptake by various wine yeasts as affected by various factors. Am. J. Enol. Vitic. 44, 35–40.

    CAS  Google Scholar 

  60. Yoshizawa K. and Takahashi K. (1988) Utilization of urease for decomposition of urea in sake. J. Brew. Soc. Jpn. 83, 142–144.

    CAS  Google Scholar 

  61. Agenbach W. A. (1977) A study of must nitrogen content in relation to incomplete fermentations, yeast production and fermentation activity, in Proceedings of the South African Society for Enology and Viticulture (Cape Town), South African Society for Enology and Viticulture, Stellenbosch, pp. 66–88.

    Google Scholar 

  62. Sablayrolles J.-M. (1992) Importance de l’azote assimilable de l’oxygene sur le deroulement de la fermentation alcoolique. Biol. Oggi 6, 155–160.

    Google Scholar 

  63. Sablayrolles J.-M., and Dubois C. (1996) Effectiveness of combined ammoniacal nitrogen and oxygen additions for completion of sluggish and stuck fermentations. J. Ferm. Bioeng. 92, 377–381.

    Article  Google Scholar 

  64. Schulze U., and Liden G. (1996) Physiological effects of nitrogen starvation in an anaerobic batch culture of Saccharomyces cerevisiae. Microbiology 142, 2299–2310.

    Article  PubMed  CAS  Google Scholar 

  65. Bission L. F. (1996). Yeast and biochemistry of ethanol formation, in Principles and Practices of Winemaking, (Boulton R. B., Singleton V. L., Bisson L. F., and Kunkee R. E., eds.), Chapman & Hall, New York, p. 140.

    Google Scholar 

  66. Lie S. (1973) The EBC-Ninhydrin method for determination of free alpha-aminonitrogen (FAN). J. Inst. Brew. 79, 37–41.

    CAS  Google Scholar 

  67. Crowell E. A., Ough C. S., and Bakalinsky A. (1985) Determination of alpha-aminonitrogen in musts and wines by TNBS methods. Am. J. Enol. Vitic. 36(2), 175–177.

    CAS  Google Scholar 

  68. Dukes B. C. and Butzke C. E. (1998) Rapid determination of primary aminoacids in grape juice using an o-phthalaldehyde/N-acetyl-L-cysteine spectrophotometric assay. Am. J. Enol. Vitic. 49, 125–134.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Zoecklein, B.W., Gump, B.H., Fugelsang, K.C. (2001). Nutritional Status of Grape Juice. In: Spencer, J.F.T., de Ragout Spencer, A.L. (eds) Food Microbiology Protocols. Methods in Biotechnology, vol 14. Humana Press. https://doi.org/10.1385/1-59259-029-2:415

Download citation

  • DOI: https://doi.org/10.1385/1-59259-029-2:415

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-867-7

  • Online ISBN: 978-1-59259-029-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics