Skip to main content

Obtaining Strains of Saccharomyces Tolerant to High Temperatures and Ethanol

  • Protocol
Food Microbiology Protocols

Part of the book series: Methods in Biotechnology ((MIBT,volume 14))

Abstract

Strains tolerant to high temperatures, ethanol levels, and high concentrations of sugar are highly desirable for a fermentation process. The maintenance of a high degree of viability during the operation of a process, biomass storage, and pauses between batches is fundamental. Fermentations at 35–40°C or higher have the advantage of facilitating ethanol recovery, leading to significant savings on operational costs of refrigeration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cairns J., Overbaugh J., and Miller S. (1988) The origin of mutants. Nature 335, 142–145.

    Article  PubMed  CAS  Google Scholar 

  2. Foster P. L. (1993) Adaptive mutation: the uses of adversity. Ann. Rev. Microbiol. 47, 467–504.

    Article  CAS  Google Scholar 

  3. Watson K. (1987) Temperature relations, in The Yeast: Yeast and the Environment (Rose A. H. and Harrison J. J. eds.), Academic New York, pp. 41–71.

    Google Scholar 

  4. Jinks-Robertson S., Greene C., and Chen W. (1998) Genetic instabilities in yeast, in Genetic Instabilities and Hereditary Neurological Diseases (Wells R. D. and Warren S. T., eds.), Academic San Diego, pp. 485–507.

    Google Scholar 

  5. Laluce C. (1997) Variability in yeast cultures and mutants generated by process conditions, in Ciencia de Alimentos: Avanços e perspectivas na America Latina (Rodriguez-Amaya D. B. and Pastore G. M., eds.), Faculdade de Engenharia de Alimentos, Campinas Brasil, pp. 172–176.

    Google Scholar 

  6. Pahl H. L. and Baeuerle P. A. (1994) Oxygen and the control of gene expression. BioEssays 16, 497–502.

    Article  PubMed  CAS  Google Scholar 

  7. Werner-Washburne M., Braun E., Johnston G. C., and Singer R. A. (1993) Stationary phase in the yeast Saccharomyces cerevisiae. Microbiol. Rev. 57, 383–401.

    PubMed  CAS  Google Scholar 

  8. Dickinson J. R. (1996) “Fusel” alcohols induce hyphal-like extensions and pseudohyphal formation in yeasts. Microbiology 142, 1391–1397.

    Article  PubMed  CAS  Google Scholar 

  9. Adams J., Puskas-Rozsa S., Simlar J., and Wilke C. M. (1992) Adaptation and major chromosomal changes in populations of Saccharomyces cerevisiae. Curr. Genet. 22, 13–19.

    Article  PubMed  CAS  Google Scholar 

  10. Laluce C., Bertolini M. C., Hernandes J., Martini A., and Martini A. V. (1987) Screening survey for yeasts that ferment sucrose at relatively high temperature. Ann. Microbiol. 37, 151–159.

    CAS  Google Scholar 

  11. Ernandes J. R., Matulionis M., Cruz S. H., Bertolini M. C., and Laluce C. (1990) Isolation of new ethanol-tolerant yeasts for fuel ethanol production from sucrose. Biotechnol. Lett. 12, 463–468.

    Article  CAS  Google Scholar 

  12. Bertolini M. C., Ernandes J. R., and Laluce C. (1991) New yeast strains for alcoholic fermentation at higher sugar concentration. Biotechnol. Lett. 13, 197–202.

    Article  CAS  Google Scholar 

  13. Laluce C., Palmieri M. C., and Cruz R. C. L. (1991) Growth and fermentation characteristics of new selected strains of Saccharomyces at high temperatures and high cell densities. Biotechnol. Bioeng. 37, 528–536.

    Article  PubMed  CAS  Google Scholar 

  14. Laluce C., Abud C. L., Greenhalf W., and Peres M. F. S. (1993) Thermotolerance behavior in sugar cane syrup fermentations of wild type yeast strains selected under pressures of temperature, high sugar and added ethanol. Biotechnol. Lett. 15, 609–614.

    Article  CAS  Google Scholar 

  15. Peres M. F. S. and Laluce C. (1998) Ethanol tolerance of thermotolerant yeasts cultivated on mixtures of sucrose and ethanol. J. Ferment. Bioeng. 85, 388–397.

    Article  CAS  Google Scholar 

  16. D:Amore T., Celotto G., Russell I., and Stewart G. G. (1989) Selection and optimization of yeast suitable for ethanol production at 40°C. Enzyme Microbiol. Technol. 11, 411–416.

    Article  CAS  Google Scholar 

  17. Banat I. M., Nigam P., and Marchant R. (1992) Isolation of thermotolerant, fermentative yeasts growing at 52°C and producing ethanol at 45°C and 50°C. World J. Microbiol. Biotechnol. 8, 259–263.

    Article  CAS  Google Scholar 

  18. Rainieri S., Zambonelli C., Tini V., Castellari L., and Giudici P. (1998) The enological traits of thermotolerant Saccharomyces strains. Am. J. Enol. Vitic. 49, 319–324.

    CAS  Google Scholar 

  19. van Uden N. (1984) Effects of ethanol on temperature relations of viability andgrowth in yeasts. Crit. Rev. Biotechnol. 1, 263–272.

    Article  Google Scholar 

  20. Casey G. P. and Ingledew W. M. (1985) Reevaluation of alcohol synthesis and tolerance in brewer’s yeast. ASBC J. 43, 75–83.

    CAS  Google Scholar 

  21. Casey G. P. and Ingledew W. M. (1986) Ethanol tolerance in yeasts. Crit. Rev. Microbiol. 13, 219–280.

    Article  PubMed  CAS  Google Scholar 

  22. D:Amore T. and Stewart G. G. (1987) Ethanol tolerance of yeast. Enzyme Microb. Technol. 9, 322–330.

    Article  CAS  Google Scholar 

  23. Kalmokoff M. L. and Ingledew W. M. (1985) Evaluation of ethanol tolerance in selected Saccharomyce strains. ASBC J. 43, 189–196.

    CAS  Google Scholar 

  24. Pamment N. B. and Dasari G. (1989) Intracellular ethanol concentration and its estimation, in Alcohol Toxicity in Yeasts and Bacteria (Van Uden N. F., ed.), CRC Boca Raton, FL, pp. 147–192.

    Google Scholar 

  25. Quain D. E. (1988) Studies on yeast physiology-impact on fermentation performance and product quality. J. Inst. Brew. 95, 315–323.

    Google Scholar 

  26. Ratledge C. (1987) Biochemistry of growth and metabolism, in Basic Biotechnology (Bu:Lock J. D. and Kristiansen B., eds.), Academic London, pp 11–55.

    Google Scholar 

  27. Ratledge C. (1991) Yeast physiology-a micro-synopsis. Bioprocess. Eng. 6, 195–203.

    Article  CAS  Google Scholar 

  28. Walker G. M. (1998) Yeast: Physiology and Biotechnology, Wiley Chichester, UK, pp. 101–264.

    Google Scholar 

  29. Booth C. (1971) Fungal culture medium, in Methods in Microbiology, Volume 4 (Booth C., ed.), Academic London, pp. 49–94.

    Google Scholar 

  30. Dombek K. M. and Ingram L. O. (1986) Magnesium limitation and its role in apparent toxicity of ethanol during yeast fermentation. Appl. Environ. Microbiol. 52, 975–981.

    PubMed  CAS  Google Scholar 

  31. Thomas K. C. and Ingledew W. M. (1992) Production of 21% (v/v) ethanol by fermentation of very high gravity (VHG) wheat mashes. J. Ind. Microbiol. 10, 61–68.

    Article  CAS  Google Scholar 

  32. Jones A. M. and Ingledew W. M. (1994) Fuel alcohol production: appraisal of nitrogenous yeast foods for very high gravity wheat mash fermentation. Process Biochem. 29, 483–488.

    Article  CAS  Google Scholar 

  33. Naudin O., Boudarel M. J., and Ramirez A. (1986) Measurement of yeast invertase during alcoholic fermentation. Biotechnol. Lett. 8, 591–592.

    Article  CAS  Google Scholar 

  34. Lee S. S., Robinson F. M., and Wang H. Y. (1981) Rapid determination of yeast viability. Biotechnol. Bioeng. Symp. 11, 641–649.

    Google Scholar 

  35. Kistler A. and Michaelis S. (1997) Counting yeast cells with a standard hemocytometer chamber, in Methods in Yeast Genetics (Adams A., Gottschling D. E., Kaiser C. A., and Steams T., eds.), Cold Spring Harbor Laboratory Press Cold Spring Harbor, NY, Appendix G, p. 177.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Peres, M.F.S., de Sousa, S.R., Laluce, C. (2001). Obtaining Strains of Saccharomyces Tolerant to High Temperatures and Ethanol. In: Spencer, J.F.T., de Ragout Spencer, A.L. (eds) Food Microbiology Protocols. Methods in Biotechnology, vol 14. Humana Press. https://doi.org/10.1385/1-59259-029-2:355

Download citation

  • DOI: https://doi.org/10.1385/1-59259-029-2:355

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-867-7

  • Online ISBN: 978-1-59259-029-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics