Detection of Campylobacter jejuni and Thermophilic Campylobacter spp. from Foods by Polymerase Chain Reaction

  • Haiyan Wang
  • Lai-King Ng
  • Jeff M. Farber
Part of the Methods in Biotechnology book series (MIBT, volume 14)

Abstract

Campylobacter spp. is one of the most commonly reported bacterial causes of acute diarrheal disease in humans throughout the world (1, 2, 3). The thermophilic Campylobacter jejuni, C. coli, C. lari, and C. upsaliensis are the most important species, with C. jejuni accounting for more than 95% of all the human Campylobacter infections (4,5). Poultry, raw milk, and water have been implicated as the major vehicles for Campylobacter infection (6,7), although other foods may also become a source of infection through cross-contamination from other food types, a food handler, or a work surface during food preparation (3). Because campylobacters have fastidious growth requirements and relatively inert biochemical characteristics, identification of these organisms and differentiation between species within the genus Campylobacter by cultural methods are time consuming and difficult (8, 9, 10). The accuracy of some biochemical tests is also affected by bacterial inoculum size (11), which can be difficult to control. Additionally, Campylobacter cells are usually present in very low numbers and may become injured in foods and environmental water, and therefore become nonculturable (12, 13, 14, 15). Because of the foregoing, nucleic acid-based detection methods became alternatives for the detection of campylobacters.

Keywords

High Performance Liquid Chromatography Microwave Agar Agarose Electrophoresis 

References

  1. 1.
    Altekruse S. F., Stern N. J., Fields P. I., and Swerdlow D. L. (1999) Campylobacter jejuni-an emerging foodborne pathogen. Emerg. Infect. Dis. 5(1), 28–235.PubMedCrossRefGoogle Scholar
  2. 2.
    Giesendorf B. A. J., Quint W. G. V., Henkens M. H. C., et al. (1992) Rapid and sensitive detection of Campylobacter spp. in chicken products by using the polymerase chain reaction. Appl. Environ. Microbiol. 58, 3804–23808.PubMedGoogle Scholar
  3. 3.
    Roels T. H., Wickus B., Bostrom H. H., et al. (1998) A foodborne outbreak ofCampylobacter jejuni (O:33) infection associated with tuna salad: a rare strain in an unusual vehicle. Epidemiol. Infect. 121, 281–2287.PubMedCrossRefGoogle Scholar
  4. 4.
    Ng L.-K., Kingombe C. I. B., Yan W., et al. (1997) Specific detection and confirmation of Campylobacter jejuni by DNA hybridization and PCR. Appl. Environ. Microbiol. 63, 4558–24563.PubMedGoogle Scholar
  5. 5.
    Van Doorn L.-J., Verschuuren-van Haperen A., van Belkum A., et al. (1998) Rapid identification of diverse Campylobacter lari strains isolated from mussels and oysters using a reverse hybridization line probe assay. J. Appl. Microbiol. 84, 545–550.PubMedCrossRefGoogle Scholar
  6. 6.
    Tauxe R. V. (1992) Epidemiology of Campylobacter jejuni infections in the United States and other industrialized nations, in Campylobacter jejuni: Current Status and Future Trends (Nachamkin I., Blaser M.J., and Tompkins L.S., eds., American Society for Microbiology Washington, DC, pp. 9–19.Google Scholar
  7. 7.
    Tauxe R. V., Hargrett-Bean N., Patton C. M., and Wachsmuth I. K. (1988) Campylobacter isolates in The United States, 1982–1986. M.M.W.R., CDC Surveil-lance, 37(No. SS-2), 1–13.Google Scholar
  8. 8.
    On S. L. W. and Holmes B. (1992) Assessment of enzyme detection tests useful in identification of campylobacteria. J. Clin. Microbiol. 30, 746–749.Google Scholar
  9. 9.
    Penner J. L. (1988) The genus Campylobacter: a decade of progress. Clin. Microbiol. Rev. 1, 157–172.PubMedGoogle Scholar
  10. 10.
    Sanders G. (1998) Isolation of Campylobacter from food, in Compendium of Analytical Methods (Warburton D., ed.), vol 3. HPB laboratory procedure MFLP-46. Polyscience Publications, Laval Québec, Canada.Google Scholar
  11. 11.
    On S. L. W. and Holmes B. (1991) Effect of inoculum size on the phenotypic characterization of Campylobacter species. J. Clin. Microbiol. 29, 923–926.PubMedGoogle Scholar
  12. 12.
    Beumer R. R., de Vries J., and Rombouts F. M. (1992) Campylobacter jejuni non-culturable coccoid cells. Int. J. FoodMicrobiol. 15, 153–163.CrossRefGoogle Scholar
  13. 13.
    Humphrey T.J. (1986) Techniques for the optimum recovery of cold injured Campylobacter jejuni from milk or water. J. Appl. Bacteriol. 61, 125–132.PubMedGoogle Scholar
  14. 14.
    Medema G. J., Schets F. M., van de Giessen A. W., and Havelaar A.H. (1992) Lack of colonization of 1 day old chicks by viable, non-culturable Campylobacter jejuni. J. Appl. Bact. 72, 512–516.Google Scholar
  15. 15.
    Rollins D. M. and Colwell R. R. (1986) Viable but nonculturable stage of Campylobcter jejuni and its role in survival in the natural aquatic environment. Appl. Environ. Microbiol. 52, 531–538.PubMedGoogle Scholar
  16. 16.
    Rahn K., De Grandis S. A., Clarke R. C., et al. (1992) Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol. Cell. Probes 6, 271–279.PubMedCrossRefGoogle Scholar
  17. 17.
    Border P. M., Howard J. J., Plastow G. S., and Siggens K. W. (1990) Detection of Listeria species and Listeria monocytogenes using polymerase chain reaction. Lett. Appl. Microbiol. 11, 158–162.PubMedCrossRefGoogle Scholar
  18. 18.
    Pollard D. R., Johnson M. W., Lior H., et al. (1990) Differentiation of Shiga toxin and verocytotoxin type I genes by the polymerase chain reation. J. Infect. Dis. 162, 1195–1198.PubMedGoogle Scholar
  19. 19.
    Stonnet V. and Guesdon J.-L. (1993) Campylobacter jejuni: specific oligonucle-otides and DNA probes for use in polymerase chain reaction-based diagnosis. FEMS Immunol. Med. Microbiol. 7, 337–344.PubMedCrossRefGoogle Scholar
  20. 20.
    Stonnet V., Sicinschi L., Mégraud F., and Guesdon J. L. (1995) Rapid detection of Campylobacter jejuni and Campylobacter coli isolated from clinical specimens using the polymerase chain reaction. Eur. J. Clin. Microbiol. Infect. Dis. 14, 355–359.PubMedCrossRefGoogle Scholar
  21. 21.
    Winters D. K. and Slavik M. F. (1995) Evaluation of a PCR based assay for specific detection of Campylobacter jejuni in chicken washes. Mol. Cell. Probes 9, 307–310.PubMedCrossRefGoogle Scholar
  22. 22.
    Winters D. K., O’Leary A. E., and Slavik M. F. (1998) Polymerase chainreaction for rapid detection of Campylobacter jejuni in artificially contaminated foods. Lett. Appl. Microbiol. 27, 163–167.PubMedCrossRefGoogle Scholar
  23. 23.
    Linton D., Lawson A. J., Owen R. J., and Stanley J. (1997) PCR detection, identifi-cation to species level, and fingerprinting of Campylobacter jejuni and Campylobacter coli direct from diarrheic samples. J. Clin. Microbiol. 35, 2568–2572.PubMedGoogle Scholar
  24. 24.
    Nachamkin I., Bohachick K., and Patton C. M. (1993) Flagellin gene typing of Campylobacter jejuni by restriction fragment length polymorphism analysis. J. Clin. Microbiol. 31, 1531–1536.PubMedGoogle Scholar
  25. 25.
    Oyofo B. A. and Rollins D. M. (1993) Efficacy of filter types for detecting Campylobacter jejuni and Campylobacter coli in environmental water samples by polymerase chain reaction. Appl. Environ. Microbiol. 59, 4090–4095.PubMedGoogle Scholar
  26. 26.
    Oyofo B. A., Thornton S. A., Burr D. H., et al. (1992) Specific detection of Campylobacter jejuni and Campylobacter coli by using polymerase chain reaction. J. Clin. Microbiol. 30, 2613–2619.PubMedGoogle Scholar
  27. 27.
    Wegmüller B., Lüthy J., and Candrian U. (1993) Direct polymerase chain reaction of Campylobacter jejuni and Campylobacter coli in raw milk and dairy products. Appl. Environ. Microbiol. 59, 2161–2165.PubMedGoogle Scholar
  28. 28.
    Kirk R. and Rowe M. T. (1994) A PCR assay for the detection of Campylobacter jejuni and Campylobacter coli in water. Lett. Appl. Microbiol. 19, 301–303.PubMedCrossRefGoogle Scholar
  29. 29.
    Van Doorn L.-J., Giesendorf B. A. J., Bax R., et al. (1997) Molecular discrimination between Campylobacter jejuni, Campylobacter coli, Campylobacter lari and Campylobacter upsaliensis by polymerase chain reaction based on a novel putative GTPase gene. Mol. Cell. Probes 11, 177–185.PubMedCrossRefGoogle Scholar
  30. 30.
    Jackson C. J., Fox A. J., and Jones D. M. (1996) A novel polymerase chain reaction assay for the detection and speciation of thermophilic Campylobacter spp. J. Appl. Bacteriol. 81, 467–473.PubMedGoogle Scholar
  31. 31.
    Lindqvist R. (1997) Preparation of PCR samples from food by a rapid and simple centrifugation technique evaluated by detection of Escherichia coli O157:H7. Int. J. Food Microbiol. 37, 73–82.PubMedCrossRefGoogle Scholar
  32. 32.
    Wang H., Blais B. W., and Yamazaki H. (1995) Rapid confirmation of polymyxin-cloth enzyme immunoassay for group D salmonellae including Salmonella enteriti-dis in eggs by polymerase chain reaction. Food Control 6, 205–209.CrossRefGoogle Scholar
  33. 33.
    Wang H., Farber J. M., Malik N., and Sanders G. (1999) Improved PCR detection of Campylobacter jejuni from chicken rinses by a simple sample preparation procedure. Int. J. Food Microbiol. 52, 39–45.PubMedCrossRefGoogle Scholar
  34. 34.
    Wernars K., Heuvelman C. J., Chakraborty T., and Notermans S. H. W. (1991) Use of the polymerase chain reaction for direct detection of Listeria monocytogenes in soft cheese. J. Appl. Bacteriol. 70, 121–126.PubMedGoogle Scholar
  35. 35.
    Van Camp G., Fierens H., Vandamme P., et al. (1993) Identification of entero-pathogenic Campylobacter species by oligonucleotide probes and polymerase chain reaction based on 16s rRNA genes. Syst. Appl. Microbiol. 16, 30–36.Google Scholar
  36. 36.
    Docherty L., Adams M. R., Patel P., and McFadden J. (1996) The magnetic immuno-polymerase chain reaction assay for the detection of Campylobacter in milk and poultry. Lett. Appl. Microbiol. 22, 288–292.PubMedCrossRefGoogle Scholar
  37. 37.
    Harmon K. M., Ransom G. M., and Wesley I. V. (1997) Differentiation of Campylobacter jejuni and Campylobacter coli by polymerase chain reaction. Mol. Cell. Probes 11, 195–200.PubMedCrossRefGoogle Scholar
  38. 38.
    Sails A. D., Bolton F. J., Fox A. J., et al. (1998) A reverse transcriptase polymerase chain reaction assay for the detection of thermophilic Campylobacter spp. Mol. Cell. Probes 12, 317–322.PubMedCrossRefGoogle Scholar
  39. 39.
    Rossen L., Norskov P., Holmstrom K. and Rasmussen O. F. (1992) Inhibition of PCR by components of food samples, microbial diagnostic assays and DNA-extraction solutions. Int. J. Food Microbiol. 17, 37–45.PubMedCrossRefGoogle Scholar
  40. 40.
    Sambrook J., Fritsch E. F., and Maniatis T. (1989) Molecular Cloning, A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press Cold Spring Harbor, NY, pp. 6.15.Google Scholar
  41. 41.
    Bolton F. J. and Robertson L. (1982) A selective medium for isolating Campylobacter jejuni/coli. J. Clin. Pathol. 35, 462–467.PubMedCrossRefGoogle Scholar
  42. 42.
    Lammerding A. M., Garcia M. M., Mann E. D., et al. (1988) Prevalence of Salmonella and thermophilic Campylobacter in fresh pork, beef, veal and poultry in Canada. J. Food Proteins 51, 47–52.Google Scholar
  43. 43.
    Mohran Z. S., Arthur R. R., Oyofo B. A., et al. (1998) Differentiation of Campylobacter isolates on the basis of sensitivity to boiling in water as measured by PCR-detectable DNA. Appl. Environ. Microbiol. 64, 363–365.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2001

Authors and Affiliations

  • Haiyan Wang
    • 1
  • Lai-King Ng
    • 2
  • Jeff M. Farber
    • 1
  1. 1.Microbiology Research Division, Bureau of Microbial HazardsFood Directorate, Health CanadaOttawaCanada
  2. 2.Bureau of Microbiology, Laboratory Centre for Disease ControlHealth CanadaWinnipegCanada

Personalised recommendations