Extraction of Amphiphilic Proteins Using Detergent-Based Aqueous Two-Phase Systems

  • Torsten Minuth
Part of the Methods in Biotechnology™ book series (MIBT, volume 11)


Extraction systems based on nonionic surfactants have been described as an alternative to the standard polymer/polymer or polymer/salt systems. Phaseforming surfactants are, for example, the nonionic polyoxyethylene-type detergents. This kind of aqueous two-phase system (ATPS) is simply induced by a switch in the temperature; on the basis of the temperature-dependent reversible hydration/dehydration of the polar ethylene oxide headgroups. A single isotropic micellar phase separates into two isotropic phases: one of the resulting two aqueous phases, the so-called coazervate phase, is enriched in detergent, whereas the other is depleted (1). The detergent forms micelles in the detergent-depleted phase and is believed to exist in the form of lamellar stacks in the coazervate phase (bi. Both phases have a high water content. The temperature at which the phase separation occurs is referred to as the cloudpoint. The clouding temperature depends on the structure of the polyoxyethylated surfactant. This kind of ATPS is especially suited for the extraction of amphiphilic/hydrophobic biomolecules.


Nonionic Surfactant Cholesterol Oxidase Bottom Phase Mixed Surfactant System Clouding Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Nakagawa, T. (1966) Solubilization in’ Nonionic Surfactants,’ in Surfactant Science Series: Nonionic Surfactants (Schick, M. J., ed.), Marcel Dekker, New York, pp. 571–582.Google Scholar
  2. 2.
    Heusch, R. (1986) Strukturen in wäβrigen Polyglykolethersystemen und ihr Einsatz in der Biotechnologie. Biotech. Forum 3, 3–8.Google Scholar
  3. 3.
    Helenius, A. and Simons, K. (1975) Solubilization of membranes by detergents. Biochim. Biophys. Acta 415, 29–79.Google Scholar
  4. 4.
    Helenius, A. (1979) Properties of detergents. Methods Enzymol. 56, 734–749.CrossRefGoogle Scholar
  5. 5.
    Neugebauer, J. (1990) Detergents: an overview. Methods Enzymol. 182, 239–253.CrossRefGoogle Scholar
  6. 6.
    Heusch, R. and Kopp, F. (1988) Structures in aqueous solutions of nonionic tensides. Prog. Colloid Polymer Sci. 77, 77–85.CrossRefGoogle Scholar
  7. 7.
    Bordier, C. (1981) Phase separation of integral membrane proteins in Triton X-114 solution. J. Biol. Chem. 250, 1604–1606.Google Scholar
  8. 8.
    Alcaraz, G., Kinet, J. P., Kumar, N., Wank, S. A., and Metzger, H. (1984) Phase separation of the receptor for immunoglobulin E and its subunits in Triton X-1 14. J. Biol. Chem. 259, 14,922–14,927.Google Scholar
  9. 9.
    Clemetson, K. J., Bienz, D., Zahno, M. L., and Lüscher, E. F. (1984) Distribution of platelet glycoproteins and phosphoproteins in hydrophobic and hydrophilic phases in Triton X-1 14 phase separation. Biochim. Biophys. Acta 778, 463–469.CrossRefGoogle Scholar
  10. 10.
    Tiruppathi, Ch., Alpers, D. H., and Seetharam, B. (1986) Phase separation of rat-intestinal brush border membrane proteins using Triton X-1 14. Anal. Biochem. 153, 330–335.CrossRefGoogle Scholar
  11. 11.
    Holm, C., Fredrikson, G., and Belfrage, P. (1986) Demonstration of the amphiphilic character of hormone-sensitive lipase by temperature-induced phase separation in Triton X-1 14 and charge-shift electrophoresis. J. Biol. Chem. 261, 15,659–15,661.Google Scholar
  12. 12.
    Pryde, J. G. and Phillips, J. H. (1986) Fractionation of membrane proteins by temperature-induced phase separation in Triton X-1 14. Biochem. J. 233, 525–533.Google Scholar
  13. 13.
    Docherty, M. and Bradford, H. F. (1988) Choline acetyltransferase in mammalian synaptosomes: evidence for an integral membrane-bound form. Neurochem. Int. 13 119–127.CrossRefGoogle Scholar
  14. 14.
    Ganong, B. R. and Delmore, J. P. (1991) Phase separation temperatures of mixtures of Triton X-1 14 and Triton X-45: application to protein separation. Anal. Biochem. 193, 35–37.CrossRefGoogle Scholar
  15. 15.
    Ramelmeier, R. A., Terstappen, G., and Kula, M-R. (1991) The partitioning of cholesterol oxidase in Triton X-114-based aqueous two-phase systems. Bioseparation 2, 315–324.Google Scholar
  16. 16.
    Terstappen, G., Geerts, A. J., and Kula, M-R. (1992) The use of detergent-based aqueous two-phase systems for the isolation of extracellular proteins: purification of a lipase from Pseudomonas cepacia. Biotechnol. Appl. Biochem. 16, 228–235.Google Scholar
  17. 17.
    Hinze, W. and Pramauro, E. (1993) A critical review of surfactant-mediated phase separations (cloud-point extractions): theory and applications. Crit. Rev. Anal. Chem. 24, 133–177.CrossRefGoogle Scholar
  18. 18.
    Sanchez-Ferrer, A., Bru, R., and Garcia-Carmona, F. (1994) Phase separation of biomolecules in polyoxyethylene glycol nonionic detergents. Crit. Rev. Biochem. Mol.Biol. 29, 275–313.CrossRefGoogle Scholar
  19. 19.
    Minuth, T. Thömmes, J., and Kula, M.-R. (1995) Extraction of cholesterol oxidase from Nocardia rhodochrous using a nonionic surfactant-based aqueous two-phase system. J. Biotechnol. 38, 151–164.CrossRefGoogle Scholar
  20. 20.
    Minuth, T. (1995) Untersuchungen zur praktischen Anwendbarkeit wäβriger Zweiphasen-systeme auf der Basis nichtionischer Tenside als technische Reinigungsmethode für amphiphile Proteine. Ph.D. dissertation, University of Düsseldorf, Germany.Google Scholar
  21. 21.
    Minuth, T., Thömmes, J., and Kula, M-R. (1996) A closed concept for purification of the membrane-bound cholesterol-oxidase from Nocardia rhodochrous by surfactant-based cloud-point extraction, organic solvent extraction and anion-exchange chromatography. Biotechnol. Appl. Biochem. 23, 107–116.Google Scholar
  22. 22.
    Cheetham, P. S. J., Dunnill, P., and Lilly, M. D. (1982) The characterization and interconversion of three forms of cholesterol oxidase extracted from Nocardia rhodochrous. Biochem. J. 201, 515–521.Google Scholar
  23. 23.
    Richmond, W. (1973) Preparation and properties of a cholesterol oxidase from Nocardia sp. and its application to the enzymatic assay of total cholesterol in serum. Clin. Chem. 19, 1350–1356.Google Scholar
  24. 24.
    Röschlau, P., Bernt, E., and Gruber, W. (1974) Enzymatische Bestimmung des Gesamt-Cholesterins im Serum. Z. Klin. Chem. Klin. Biochem. 20, 470–475.Google Scholar
  25. 25.
    Hjelmeland, L. M. and Chrambach, A. (1984) Solubilization of functional membrane-bound receptors, in Membranes, Detergents, and Receptor Solubilization (Venter, J. C. and Harrison, L. C., eds.), A. R. Liss, New York, pp. 35–46.Google Scholar
  26. 26.
    Trudhill, P. W. (1978) Microbial degradation of alicyclic hydrocarbons, in Developments in Biode gradation of Hydrocarbons (Watkinson, R. J., ed.), Applied Science, London, pp. 47–84.Google Scholar
  27. 27.
    Hopper, D. J. (1978) Microbial degradation of aromatic hydrocarbons, in Developments inBiodegradation of Hydrocarbons (Watkinson, R. J., ed.), Applied Science, London, pp. 85–112.Google Scholar
  28. 28.
    Schick, M. J. (1966) Surfactant Science Series: Nonionic Surfactants. Marcel Dekker, New York.Google Scholar
  29. 29.
    Schott, H., Royce, A. E., and Han, S. K. (1984) Effect of inorganic additives on solutions of nonionic surfactants. J. Colloid Interface Sci. 98, 196–201.Google Scholar
  30. 30.
    Fricke, B. (1993) Phase separation of nonionic detergents by salt addition and its application to membrane proteins. Anal. Biochem. 212, 154–159.CrossRefGoogle Scholar
  31. 31.
    Neuhoff, V., Philipp, K., Zimmer, H. G., and Mesecke, S. (1979) A simple, versatile, sensitive and volume-independent method for quantitative protein determination which is independent of other external influences. Hoppe-Seyler’s Z. Physiol. Chem. 360, 1657–1670.CrossRefGoogle Scholar
  32. 32.
    Lowry, O., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) Protein measurement with the Folin Phenol reagent. J. Biol. Chem. 193, 265–275.Google Scholar

Copyright information

© Humana Press Inc. 2000

Authors and Affiliations

  • Torsten Minuth
    • 1
  1. 1.Institut für Biophysik und Physikalische BiochemieUniversität RegensburgRegensburgGermany

Personalised recommendations