Skip to main content

Overview of Laser Microbeam Applications as Related to Antibody Targeting

  • Protocol
Immunocytochemical Methods and Protocols

Part of the book series: Methods in Molecular Bilogy ((MIMB,volume 34))

  • 2548 Accesses

Abstract

Laser-based microscopic systems (laser microbeams) are becoming popular tools for investigating various aspects of molecular and cellular biology (1). Depending on the wavelength, energy, and beam geometry employed, laser microbeams can be used for fluorescence excitation, microsurgery, cellular ablation, or micromanipulation of cells and organelles. The use of antibodies permits the targeting of specific antigens or cell types for analysis or treatment. Integrating a laser, microscope, and detection system (camera or photomultiplier tube) with a personal computer creates a workstation capable of controlling data acquisition parameters and performing subsequent data analysis. An example of one such workstation is shown in Fig. 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berns, M. W., Wright, W. H, and Wiegand Steubing, R. (1991) Laser microbeam as a tool in cell biology. Int. Rev. Cyt. 129, 1–44.

    Article  CAS  Google Scholar 

  2. Matyus, L (1992) Fluorescence resonance energy transfer measurements on cell surfaces. A spectroscopic tool for determining protein interactions. J. Photochem Photobiol B: Biol. 12, 323–337.

    Article  CAS  Google Scholar 

  3. Szollosi, J., Damjanovich, S., Mulhern, S. A., and Tron, L. (1987) Fluorescence energy transfer and membrane potential measurements monitor dynamic properties of cell membranes: a critical review. Prog. Biophys. Mol. Biol. 49, 65–87

    Article  PubMed  CAS  Google Scholar 

  4. Szollosi, J, Matyus, L, Tron, L., Balazs, M., Ember, I, Fulwyler, M J, and Damjanovich, S. (1987) Flow cytometric measurements of fluorescence energy transfer using single laser excitation. Cytometry 8, 120–128.

    Article  PubMed  CAS  Google Scholar 

  5. Jovin, T.M. and Arndt-Jovin, D. J. (1989) FRET microscopy. digital imaging of fluorescence resonance energy transfer. Application in cell biology, in Microspectrofluorometry of Single Living Cells (Kohen, E, Ploem, J. S., and Hirschberg, J. G., eds), Academic, Orlando, FL, pp 99–117

    Google Scholar 

  6. Szabo, G., Jr., Pine, P. S, Weaver, J. L, Kasari, M., and Aszalos, A. (1992) Epitope mapping by photobleaching fluorescence resonance energy transfer measurements using a laser scanning microscope system. Biophys. J. 61, 661–670.

    Article  CAS  Google Scholar 

  7. Szabo, G, Jr., Pine, P. S, Weaver, J L, Rao, P E, and Aszalos, A. (1992) CD4 changes conformation upon ligand binding J Immunol. 149, 3596–3604.

    PubMed  CAS  Google Scholar 

  8. Szabo, G., Jr., Pine, P. S, Weaver, J. L., Rao, P. E., and Aszalos, A. (1994) The Lselectin (Leu8) molecule is associated with the TcR/CD3 receptor, fluorescence energy transfer measurements on live cells Immunol Cell Biol (in press).

    Google Scholar 

  9. Wolf, D. E. and Edidin, M (1981) Diffusion and mobility in surface membranes, in Techniques in Cellular Physiology (Baker, P, ed), Elsevier, North Holland, pp 1–14.

    Google Scholar 

  10. Anders, J J and Woolery, S. (1992) Microbeam laser-injured neurons increase in vitro astrocytic gap junctional commumcation as measured by fluorescence recovery after photobleaching. Lasers Surg Med 12, 51–62

    Article  PubMed  CAS  Google Scholar 

  11. Velez, M, Barald, K F, and Axelrod, D (1990) Rotational diffusion of acetylcholine receptors on cultured rat myotubes J Cell Biol. 110, 2049–2059.

    Article  PubMed  CAS  Google Scholar 

  12. Hellen, E. H. and Axelrod, D. (1991) Kinetics of epidermal growth factor/receptor binding on cells measured by total internal reflection/fluorescence recovery after photobleaching. J. Fluorescence 1, 113–128.

    Article  CAS  Google Scholar 

  13. Edidin, M., Zagyansky, Y, and Lardner, T J (1976) Measurements of membrane protein lateral diffusion in single cells. Science 191, 466–468

    Article  PubMed  CAS  Google Scholar 

  14. Koppel, D E. (1980) Lateral diffusion in biological membranes. a normal mode analysis of diffusion on a spherical surface. Biophys. J. 30, 187–192.

    Article  PubMed  CAS  Google Scholar 

  15. Jay, D. G (1988) Selective destruction of protein function by chromophore-as-sisted laser inactivation. Biochemistry 85, 5454–5458.

    CAS  Google Scholar 

  16. Linden, K G, Liao, J C, and Jay, D G (1992) Spatial specificity of chromophore assisted laser inactivation of protein function. Biophys. J. 61, 956–962.

    Article  PubMed  CAS  Google Scholar 

  17. Jay, D G and Keshishian, H. (1990) Laser inactivation of fascilin I disrupts axon adhesion of grasshopper pioneer neurons Nature 348, 548–550.

    Article  PubMed  CAS  Google Scholar 

  18. Miller, J P and Selverston, A. I (1979) Rapid killing of single neurons by irradiation of intracellularly injected dye. Science 206, 702–704.

    Article  PubMed  CAS  Google Scholar 

  19. Schindler, M, Allen, M. L., Olinger, M. R., and Holland, J. F. (1985) Automated analysis and survival selection of anchorage-dependent cells under normal growth conditions. Cytometry 6, 368–374

    Article  PubMed  CAS  Google Scholar 

  20. Schindler, M, Jiang, L-W, Swaisgood, M., and Wade, M. H. (1989) Analysis, selection, and sorting of anchorage dependent cells under growth conditions. Methods Cell Biol. 32, 423–446

    Article  PubMed  CAS  Google Scholar 

  21. Jiwa, A. H and Wilson, J. M. (1991) Selection of rare event cells expressing β-galactosidase Methods (San Diego, CA) 2, 272–280

    CAS  Google Scholar 

  22. Weber, G. and Greulich, K. O (1992) Manipulation of cells, organelles, and genomes by laser microbeam and optical trap Int. Rev. Cytol. 133, 1–41

    Article  PubMed  CAS  Google Scholar 

  23. Ashkin, A., Dziedzic, J. M, and Yamane, T. (1987) Optical trapping and manipulation of single cells using infrared laser beams Nature 330, 769–771.

    Article  PubMed  CAS  Google Scholar 

  24. Seeger, S, Monajembashi, S., Hutter, K. J, Futterman, G, Wolfrum, J., and Greulich, K.O (1991) Application of laser optical tweezers in immunology and molecular genetics. Cytometry 12, 497–504.

    Article  PubMed  CAS  Google Scholar 

  25. Wiegand Steubing, R, Cheng, S, Wright, W H., Numajiri, Y., and Berns, M W (1991) Laser induced cell fusion in combination with optical tweezers: the laser cell fusion trap. Cytometry 12, 505–510.

    Article  Google Scholar 

  26. Buican, T. N., Smyth, M. J, Crissman, H. A, Salzman, G. C, Stewart, C. C., and Martin, J. C (1987) Automated single-cell manipulation and sorting by light trapping Appl. Opt. 26, 5311–5316.

    Article  PubMed  CAS  Google Scholar 

  27. Buican, T N, Neagley, D L, Morrison, W. C., and Upham, B. D. (1989) Optical trapping, cell manipulation, and robotics SPIE Proc. 1063, 190–197.

    Google Scholar 

  28. Berns, M. W., Atst, J. R., Wright, W. H., and Liang, H. (1992) Optical trapping in animal and fungal cells using a tunable, near-infrared titanium-sapphire laser. Exp Cell Res. 198, 375–378.

    Article  PubMed  CAS  Google Scholar 

  29. Edidin, M., Kuo, S. C., and Sheetz, M. P. (1991) Lateral movements of membrane glycoprotems restricted by dynamic cytoplasmic barriers. Science 254, 1379–1382.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Humana Press Inc.

About this protocol

Cite this protocol

Scott Pine, P. (1994). Overview of Laser Microbeam Applications as Related to Antibody Targeting. In: Javois, L.C. (eds) Immunocytochemical Methods and Protocols. Methods in Molecular Bilogy, vol 34. Humana Press. https://doi.org/10.1385/0-89603285-X:349

Download citation

  • DOI: https://doi.org/10.1385/0-89603285-X:349

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-285-9

  • Online ISBN: 978-1-59259-521-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics