Overview of Laser Microbeam Applications as Related to Antibody Targeting

  • P. Scott Pine
Part of the Methods in Molecular Bilogy book series (MIMB, volume 34)


Laser-based microscopic systems (laser microbeams) are becoming popular tools for investigating various aspects of molecular and cellular biology (1). Depending on the wavelength, energy, and beam geometry employed, laser microbeams can be used for fluorescence excitation, microsurgery, cellular ablation, or micromanipulation of cells and organelles. The use of antibodies permits the targeting of specific antigens or cell types for analysis or treatment. Integrating a laser, microscope, and detection system (camera or photomultiplier tube) with a personal computer creates a workstation capable of controlling data acquisition parameters and performing subsequent data analysis. An example of one such workstation is shown in Fig. 1.


Laser Beam Fluorescence Resonance Energy Transfer Malachite Green Fluorescence Excitation Optical Trap 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Berns, M. W., Wright, W. H, and Wiegand Steubing, R. (1991) Laser microbeam as a tool in cell biology. Int. Rev. Cyt. 129, 1–44.CrossRefGoogle Scholar
  2. 2.
    Matyus, L (1992) Fluorescence resonance energy transfer measurements on cell surfaces. A spectroscopic tool for determining protein interactions. J. Photochem Photobiol B: Biol. 12, 323–337.CrossRefGoogle Scholar
  3. 3.
    Szollosi, J., Damjanovich, S., Mulhern, S. A., and Tron, L. (1987) Fluorescence energy transfer and membrane potential measurements monitor dynamic properties of cell membranes: a critical review. Prog. Biophys. Mol. Biol. 49, 65–87PubMedCrossRefGoogle Scholar
  4. 4.
    Szollosi, J, Matyus, L, Tron, L., Balazs, M., Ember, I, Fulwyler, M J, and Damjanovich, S. (1987) Flow cytometric measurements of fluorescence energy transfer using single laser excitation. Cytometry 8, 120–128.PubMedCrossRefGoogle Scholar
  5. 5.
    Jovin, T.M. and Arndt-Jovin, D. J. (1989) FRET microscopy. digital imaging of fluorescence resonance energy transfer. Application in cell biology, in Microspectrofluorometry of Single Living Cells (Kohen, E, Ploem, J. S., and Hirschberg, J. G., eds), Academic, Orlando, FL, pp 99–117Google Scholar
  6. 6.
    Szabo, G., Jr., Pine, P. S, Weaver, J. L, Kasari, M., and Aszalos, A. (1992) Epitope mapping by photobleaching fluorescence resonance energy transfer measurements using a laser scanning microscope system. Biophys. J. 61, 661–670.CrossRefGoogle Scholar
  7. 7.
    Szabo, G, Jr., Pine, P. S, Weaver, J L, Rao, P E, and Aszalos, A. (1992) CD4 changes conformation upon ligand binding J Immunol. 149, 3596–3604.PubMedGoogle Scholar
  8. 8.
    Szabo, G., Jr., Pine, P. S, Weaver, J. L., Rao, P. E., and Aszalos, A. (1994) The Lselectin (Leu8) molecule is associated with the TcR/CD3 receptor, fluorescence energy transfer measurements on live cells Immunol Cell Biol (in press).Google Scholar
  9. 9.
    Wolf, D. E. and Edidin, M (1981) Diffusion and mobility in surface membranes, in Techniques in Cellular Physiology (Baker, P, ed), Elsevier, North Holland, pp 1–14.Google Scholar
  10. 10.
    Anders, J J and Woolery, S. (1992) Microbeam laser-injured neurons increase in vitro astrocytic gap junctional commumcation as measured by fluorescence recovery after photobleaching. Lasers Surg Med 12, 51–62PubMedCrossRefGoogle Scholar
  11. 11.
    Velez, M, Barald, K F, and Axelrod, D (1990) Rotational diffusion of acetylcholine receptors on cultured rat myotubes J Cell Biol. 110, 2049–2059.PubMedCrossRefGoogle Scholar
  12. 12.
    Hellen, E. H. and Axelrod, D. (1991) Kinetics of epidermal growth factor/receptor binding on cells measured by total internal reflection/fluorescence recovery after photobleaching. J. Fluorescence 1, 113–128.CrossRefGoogle Scholar
  13. 13.
    Edidin, M., Zagyansky, Y, and Lardner, T J (1976) Measurements of membrane protein lateral diffusion in single cells. Science 191, 466–468PubMedCrossRefGoogle Scholar
  14. 14.
    Koppel, D E. (1980) Lateral diffusion in biological membranes. a normal mode analysis of diffusion on a spherical surface. Biophys. J. 30, 187–192.PubMedCrossRefGoogle Scholar
  15. 15.
    Jay, D. G (1988) Selective destruction of protein function by chromophore-as-sisted laser inactivation. Biochemistry 85, 5454–5458.Google Scholar
  16. 16.
    Linden, K G, Liao, J C, and Jay, D G (1992) Spatial specificity of chromophore assisted laser inactivation of protein function. Biophys. J. 61, 956–962.PubMedCrossRefGoogle Scholar
  17. 17.
    Jay, D G and Keshishian, H. (1990) Laser inactivation of fascilin I disrupts axon adhesion of grasshopper pioneer neurons Nature 348, 548–550.PubMedCrossRefGoogle Scholar
  18. 18.
    Miller, J P and Selverston, A. I (1979) Rapid killing of single neurons by irradiation of intracellularly injected dye. Science 206, 702–704.PubMedCrossRefGoogle Scholar
  19. 19.
    Schindler, M, Allen, M. L., Olinger, M. R., and Holland, J. F. (1985) Automated analysis and survival selection of anchorage-dependent cells under normal growth conditions. Cytometry 6, 368–374PubMedCrossRefGoogle Scholar
  20. 20.
    Schindler, M, Jiang, L-W, Swaisgood, M., and Wade, M. H. (1989) Analysis, selection, and sorting of anchorage dependent cells under growth conditions. Methods Cell Biol. 32, 423–446PubMedCrossRefGoogle Scholar
  21. 21.
    Jiwa, A. H and Wilson, J. M. (1991) Selection of rare event cells expressing β-galactosidase Methods (San Diego, CA) 2, 272–280Google Scholar
  22. 22.
    Weber, G. and Greulich, K. O (1992) Manipulation of cells, organelles, and genomes by laser microbeam and optical trap Int. Rev. Cytol. 133, 1–41PubMedCrossRefGoogle Scholar
  23. 23.
    Ashkin, A., Dziedzic, J. M, and Yamane, T. (1987) Optical trapping and manipulation of single cells using infrared laser beams Nature 330, 769–771.PubMedCrossRefGoogle Scholar
  24. 24.
    Seeger, S, Monajembashi, S., Hutter, K. J, Futterman, G, Wolfrum, J., and Greulich, K.O (1991) Application of laser optical tweezers in immunology and molecular genetics. Cytometry 12, 497–504.PubMedCrossRefGoogle Scholar
  25. 25.
    Wiegand Steubing, R, Cheng, S, Wright, W H., Numajiri, Y., and Berns, M W (1991) Laser induced cell fusion in combination with optical tweezers: the laser cell fusion trap. Cytometry 12, 505–510.CrossRefGoogle Scholar
  26. 26.
    Buican, T. N., Smyth, M. J, Crissman, H. A, Salzman, G. C, Stewart, C. C., and Martin, J. C (1987) Automated single-cell manipulation and sorting by light trapping Appl. Opt. 26, 5311–5316.PubMedCrossRefGoogle Scholar
  27. 27.
    Buican, T N, Neagley, D L, Morrison, W. C., and Upham, B. D. (1989) Optical trapping, cell manipulation, and robotics SPIE Proc. 1063, 190–197.Google Scholar
  28. 28.
    Berns, M. W., Atst, J. R., Wright, W. H., and Liang, H. (1992) Optical trapping in animal and fungal cells using a tunable, near-infrared titanium-sapphire laser. Exp Cell Res. 198, 375–378.PubMedCrossRefGoogle Scholar
  29. 29.
    Edidin, M., Kuo, S. C., and Sheetz, M. P. (1991) Lateral movements of membrane glycoprotems restricted by dynamic cytoplasmic barriers. Science 254, 1379–1382.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1994

Authors and Affiliations

  • P. Scott Pine
    • 1
  1. 1.Food and Drug AdministrationWashington

Personalised recommendations