Skip to main content

Receptor-Mediated Release of Inositolphosphates in Brain Slices

  • Protocol
Neurodegeneration Methods and Protocols

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 22))

  • 450 Accesses

Abstract

Target-cell response to a number of neurotransmitters, growth factors, hormones, and other stimuli are initiated by cell-surface receptor-mediated activation of phospholipase C (PLC) and the rapid hydrolysis of phosphoinositides (13). The activation of PLC by receptors for most neurotransmitters and growth factors occurs through a mechanism involving a guanine nucleotide regulatory protein or G protein. The PLC-catalyzed hydrolyses of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) results in the formation of inositol 1,4,5 trisphosphate (Ins(l,4,5)P3) and diacylglycerol (DAG). Both Ins(l,4,5)P3 and DAG have second-messenger functions inside the cell. Ins(l,4,5)P3 mobilizes intracellular Ca2+ by binding to specific intracellular receptors that promote opening of calcium channels in vesicular storage sites associated with endoplasmic reticulum (4,5), whereas DAG binds to and activates protein kinase C (PKC), resulting in the phosphorylation of a number of intracellular proteins (1,2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berridge, M. J. and Irvine, R. F. (1989) Inositol phosphates and cell signaling. Nature 341, 197–205.

    Article  PubMed  CAS  Google Scholar 

  2. Fisher, S. K. and Agranoff, B. W. (1987) Receptor activation and inositol lipid hydrolysis in neuronal tissues. J. Neurochem. 48, 999–1017.

    Article  PubMed  CAS  Google Scholar 

  3. Osborne, N. N, Tobin, A. B., and Ghazi, H. (1988) Role of inositoltrisphosphate as a second messenger in signal transduction processes: an assay. Neurochem. Res. 13,177–191.

    Article  PubMed  CAS  Google Scholar 

  4. Irvine, R. E. (1987) Inositol phosphates and calcium entry. Nature 328, 386.

    Article  PubMed  CAS  Google Scholar 

  5. Steb, H., Irvine, R. F., Berridge, M. J., and Sculz, I. (1983) Release of Ca2+ from a nonmitochondrial store in pancreatic cells by inositol 1,4,5-trisphosphate. Nature 306, 67–69.

    Article  Google Scholar 

  6. Nahorski, S. R., Kendall, D. A., and Batty, L. L. (1986) Receptors and phosphoinositide metabolism in the central nervous system. Biochem. Pharmacol. 35, 2447–2453.

    Article  PubMed  CAS  Google Scholar 

  7. Berridge, M. J., Downes, C. P., and Hanley, M. R. (1982) Lithium amplifies agonist-dependent phosphatidylinositol response in brain and salivary glands. Biochem. J. 206, 587–595.

    PubMed  CAS  Google Scholar 

  8. Irvine, R. E. (1990) Methods in Inositide Research. Raven, New York.

    Google Scholar 

  9. Jenkinson, S., Patel, N., Nahorski, S. R., and Challiss, R. A. (1993) Comparative effects of lithium on the phosphoinositide cycle in rat cerebral cortex, hippocampus and striatum. J. Neurochem. 61, 1082–1090.

    Article  PubMed  CAS  Google Scholar 

  10. Gonzales, R. A. and Crews, F. T. (1984) Characterization of the cholinergic stimulation of phosphoinositide hydrolysis in rat brain slices. J. Neurosci. 4, 3120–3127.

    PubMed  CAS  Google Scholar 

  11. Janowsky, A., Labarca, R., and Paul, S. M. (1984) Characterization of neurotransmitter receptor-mediated phosphoinositide hydrolysis in the rat hippocampus. Life Sci. 35, 1953–1961.

    Article  PubMed  CAS  Google Scholar 

  12. Willars, G. B., Challiss, R. A., and Nahorski, S. R. (1996) Acute regulation of the receptor-mediated phosphoinositide signal transduction pathway. J. Lipid Metab. Cell Signaling 14, 157–168.

    Article  CAS  Google Scholar 

  13. Balduini, W., Sheldon, D. M., and Costa, L. C. (1987) Developmental changes in muscarinic receptor-stimulated phosphoinositide metabolism in rat brain. J. Pharm. Expt. Ther. 241, 421–427.

    CAS  Google Scholar 

  14. Heacock, A. M., Fisher, S. K., and Agranoff, B. W. (1987) Enhanced coupling of neonatal muscarinic receptors in rat brain to phosphoinositide turnover. J. Neurochem. 48, 1904–1911.

    Article  PubMed  CAS  Google Scholar 

  15. Rooney, T. A. and Nahorski, S. R. (1987) Postnatal ontogeny of agonist and depolarization-induced phosphoinositide hydrolysis in the rat cerebral cortex. J. Pharmacol. Expt. Ther. 243, 333–341.

    CAS  Google Scholar 

  16. Tandon, P., Ali, S. F., Nanry, K., and Tilson, H. A. (1991) Age-dependent changes in the receptor-stimulated phosphoinositide turnover in the rat hippocampus. Pharmacol. Biochem. Behavior. 38, 861–867.

    Article  CAS  Google Scholar 

  17. Reed, L. J. and de Belleroche, J. (1988) Increased polyphosphoinositide responsiveness in the cerebral cortex induced by cholinergic denervation. J. Neurochem. 50, 1566–1571.

    Article  PubMed  CAS  Google Scholar 

  18. Tandon, P., Harry, G. J., and Tilson, H. A. (1989) Colchicine-induced alterations in receptor mediated phosphoinositide hydrolysis in the rat hippocampus. Brain Res. 477, 308–313.

    Article  PubMed  CAS  Google Scholar 

  19. Tandon, P., Ali, S. F., Bonner, M., and Tilson, H. A. (1989) Characterization of receptor-coupled phosphoinositide hydrolysis in the rat hippocampus after intradentate colchicine. J. Neurochem. 53, 1117–1125.

    Article  PubMed  CAS  Google Scholar 

  20. Tandon, P., Padilla, S., Pope, C. N., Barone, S., Jr., and Tilson, H. A. (1994) Fenthion produces persistent decreases in muscarinic receptor function in the adult rat retina. Toxicol. Applied Pharmacol. 125, 271–280.

    Article  CAS  Google Scholar 

  21. Nicoletti, F., Wroblewski, J. T., Alho, H., Fadda, E., and Costa, E. (1987) Lesions of putative glutaminergic pathways potentiate the increase of inositolphospholipid hydolysis elicited by exicitatory amino acids. Brain Res. 436, 103–112.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Tandon, P. (1999). Receptor-Mediated Release of Inositolphosphates in Brain Slices. In: Harry, J., Tilson, H.A. (eds) Neurodegeneration Methods and Protocols. Methods in Molecular Medicine™, vol 22. Humana Press. https://doi.org/10.1385/0-89603-612-X:177

Download citation

  • DOI: https://doi.org/10.1385/0-89603-612-X:177

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-612-3

  • Online ISBN: 978-1-59259-604-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics