Skip to main content

Measurement of Calcium Buffering by Intracellular Organelles in Brain

  • Protocol
Neurodegeneration Methods and Protocols

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 22))

  • 465 Accesses

Abstract

Cells maintain low concentrations of intracellular free calcium ([Ca2+]i) by the effective operation of Ca2+ pumps located in plasma membrane as well as intracellular organelles, such as mitochondria and endoplasmic reticulum (microsomes) (1,2). Under normal conditions, Ca2+ enters the cell by diffusion down an electrochemical gradient through voltage-dependent or receptor-mediated Ca2+-sensitive channels (2). Calcium can also be released from intra-cellular stores such as endoplasmic reticulum and mitochondria. As cytosolic free Ca2+ increases, Ca2+-binding proteins, mitochondria, and microsomes initially sequester the Ca2+ from cytosol. However, if there is a sustained influx of Ca2+, low cytoplasmic Ca2+ level is maintained by active extrusion through plasma membrane Ca2+-ATPase and by the Na+/Ca2+ exchanger (1,2). Mitochondria and microsomes differ in the mechanisms by which they sequester cytoplasmic Ca2+. Microsomal Ca2+-sequestration is an active process involving ATP hydrolysis by Ca2+-ATPase. On the other hand, mitochondrial Ca2+-sequestration is an electrophoretic uniport process driven by the potential difference established across the mitochondrial inner membrane by an ATP-energized proton pump (1). These calcium-buffering processes within the neuron are illustrated in Fig. 1. The efficient operation of calcium sequestration and extrusion mechanisms within the cell is crucial for the maintenance of normal calcium homeostasis.

Different calcium-buffering processes involved in the maintenance of normal cellular Ca2+ homeostasis. The intracellular free Ca2+ ranges from 0.1ā€“0.3 ĀµM, in where as extracellular calcium is in millimolar concentrations. There is about 10,000-fold concentration gradient across the plasma membrane. This gradient is maintained by the effective operation of calcium pumps located in mitochondria, endoplasmic reticulum, and plasma membrane. All of these processes are energy-dependent and require the hydrolysis of adenosine triphosphate (ATP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carafoli, E. (1987) Intracellular calcium homeostasis. Annu. Rev. Biochem. 56, 395ā€“433.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  2. Miller, R. J. (1991) The control of neuronal Ca2+-homeostasis. Prog. Neurobiol. 37, 255ā€“285.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  3. Komulainen, H. and Bondy, S. C. (1988) Increased free intracellular Ca2+ by toxic agents: an index of potential neurotoxicity. Trends Pharmacol. Sci. 9, 154ā€“156.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  4. Johnson, J. D., Meisenheimer, T. L., and Isom, G. E. (1986) Cyanide-induced neurotoxicity: role of neuronal calcium. Toxicol. Appl. Pharmacol. 84, 464ā€“469.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  5. Kodavanti, P. R. S., Shin, D., Tilson, H. A., and Harry, G. J. (1993) Comparative effects of two polychlorinated biphenyl congeners on calcium homeostasis in rat cerebellar granule cells. Toxicol. Appl. Pharmacol. 123, 97ā€“106.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  6. Kodavanti, P. R. S., Ward, T. R., McKinney, J. D., and Tilson, H. A. (1996) Inhibition of microsomal and mitochondrial Ca2+ sequestration in rat cerebellum by polychlorinated biphenyl mixtures and congeners: structure-activity relationships. Arch. Toxicol. 70, 150ā€“157.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  7. Desaiah, D., Chetty, C. S., and Prasada Rao, K. S. (1985) Chlordecone inhibition of calmodulin activated calcium ATPase in rat brain synaptosomes. J. Toxicol. Envir. Hlth. 16, 189ā€“195.

    ArticleĀ  CASĀ  Google ScholarĀ 

  8. Prasada Rao, K. S., Chetty, C. S., Trottman, C. H., Uzodinma, J. E., and Desaiah, D. (1985) Effect of tricyclohexylhydroxytin on synaptosomal Ca2+-dependent ATP hydrolysis and rat brain subcellular calmodulin. Cell Biochem. Fund. 3, 267ā€“272.

    ArticleĀ  CASĀ  Google ScholarĀ 

  9. Pounds, J. G. (1984) Effect of lead intoxication on calcium homeostasis and calcium-mediated cell function: a review. NeuroToxicology 5, 295ā€“332.

    PubMedĀ  CASĀ  Google ScholarĀ 

  10. Binah, O., Meiri, U., and Rahamimoff, H. (1978) The effects of mercuric chloride and mersalyl on mechanisms regulating intracellular calcium and transmitter release. Eur. J. Pharmacol. 51, 453ā€“457.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  11. Kodavanti, P. R. S., Mundy, W. R., Tilson, H. A., and Harry, G. J. (1993) Effects of selected neuroactive chemicals on calcium transporting systems in rat cerebellum and on survival of cerebellar granule cells. Fund. Appl. Toxicol. 21, 308ā€“316.

    ArticleĀ  CASĀ  Google ScholarĀ 

  12. Abdel-Hamid, K. M. and Tymianski, M. (1997) Mechanisms and effects of intracellular calcium buffering on neuronal survival in organotypic hippocampal cultures exposed to anoxia/aglycemia or to excitotoxins. J. Neurosci. 17, 3538ā€“3553.

    PubMedĀ  CASĀ  Google ScholarĀ 

  13. Dodd, P. R., Hardy, J. A., Oakley, A. E., Edwardson, J. A., Perry, E. K., and Delaunoy, J. P. (1981) A rapid method for preparing synaptosomes: comparison with alternative procedures. Brain Res. 226, 107ā€“118.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  14. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) Protein measurement with the folin-phenol reagent. J. Biol. Chem. 193, 265ā€“275.

    PubMedĀ  CASĀ  Google ScholarĀ 

  15. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248ā€“254.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  16. Moore, L., Chen, T., Knapp, H. R., Jr., and Landon, E. L. (1975) Energy dependent calcium sequestration activity in rat liver microsomes. J. Biol. Chem. 250, 4562ā€“4568.

    PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 1999 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Kodavanti, P.R.S. (1999). Measurement of Calcium Buffering by Intracellular Organelles in Brain. In: Harry, J., Tilson, H.A. (eds) Neurodegeneration Methods and Protocols. Methods in Molecular Medicineā„¢, vol 22. Humana Press. https://doi.org/10.1385/0-89603-612-X:171

Download citation

  • DOI: https://doi.org/10.1385/0-89603-612-X:171

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-612-3

  • Online ISBN: 978-1-59259-604-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics