Experimental Biofilms and Their Applications in the Study of Environmental Processes

  • Joanna C. Rayner
  • Hilary M. Lappin-Scott
Part of the Methods in Biotechnology book series (MIBT, volume 12)


The trend in research in recent years has been to extrapolate results from studies of planktonic bacteria into environmental systems. This method of studying planktonic bacteria under in vitro conditions has undoubtedly yielded important data in a wide range of areas; however, the examination of several environmental habitats, extreme or otherwise, such as a drinking water pipeline has revealed only relatively low numbers of planktonic cells. In aquatic systems the biofilm bacterial count per square centimeter of surface has been estimated to be approx 1000-fold higher than the corresponding planktonic count per cubic centimeter (1). Surface colonization by microorganisms was first recognized as significant as early as 1943 (2), and there is now a realization that we need to study microorganisms not only as biofilms but also in the context of the biofilm interactions with their immediate surroundings and the influences they exert on the environment. The environment has a significant effect on the metabolic activities of bacteria, and studies of biofilm bacteria represent the best tool for examining growth in natural and pathogenic ecosystems (3). The study of biofilms is relevant to a wide range of areas, and a multidisciplinary approach is the most productive route forward in the quest to understand the interactions occurring not only between the cells and the surfaces to which they adhere, but between the microcolonies that coexist within multispecies biofilms (4).


Environmental Process Planktonic Cell Planktonic Bacterium Differential Interference Contrast Microscopy Antifouling Coating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Costerton, J. W., Nickel, J. C., and Ladd, T. I. (1986) Suitable methods for the comparative study of free-living and surface-associated bacterial populations, in Bacteria in Nature, vol. 2, (Poindexter, J. S. and Leadbetter, E. R., eds.), Plenum, New York, pp. 49–84.Google Scholar
  2. 2.
    Zobell, C. E. (1943) The effect of solid surfaces on bacterial activity. J. Bacteriol. 46, 39–56.Google Scholar
  3. 3.
    Costerton, J. W., Lewandowski, Z., deBeer, D., Korber, D., and James, G. (1994) Biofilms: the customised microniche. J. Bacteriol. 176(8), 2137–2142.Google Scholar
  4. 4.
    Characklis, W. C. and Marshall, K. C. (1989) Biofilms: a basis for an interdisciplinary approach, in Biofilms, (Characklis, W. C. and Marshall, K. C., eds.), Wiley Interscience, New York, NY, pp. 3.Google Scholar
  5. 5.
    Kjellerberg, S. and Hermansson, N. (1984) The effect of interfaces on small starved marine bacteria. Appl. Environ. Microbiol. 48, 497–503.Google Scholar
  6. 6.
    Zottola, E. A. and Sasahara, K. C. (1994) Microbial biofilms in the food processing industry—should they be a concern? Int. J. Food Microbiol. 23, 125–148.CrossRefGoogle Scholar
  7. 7.
    Costerton, J. W., Cheng, K.-J., Geesey, G. G., et al. (1987) Bacterial biofilms in nature and disease. Ann. Rev. Microbiology 41, 435–464.CrossRefGoogle Scholar
  8. 8.
    Bohlander, G. S. (1991) Biofilm effects on drag: measurements on ships, in Polymers in a Marine Environment. Marine Management (Holdings), p. 135.Google Scholar
  9. 9.
    van Loosdrecht, M. C., Lyklema, J., Norde, W., and Zehnder, A. J. B. (1990) Influence of interfaces on microbial activity. Microbiological Rev. 54(1), 75–87.Google Scholar
  10. 10.
    Anwar, H., Dasgupta, M. K., and Costerton, J. W. (1990) Testing the susceptibility of bacteria in biofilms to antibacterial agents. Antimicrob. Agents Chemother. 34(11), 2043–2046.CrossRefGoogle Scholar
  11. 11.
    Anwar, H., Strap, J. L., and Costerton, J. W. (1992) Establishment of ageing biofilms: possible mechanisms of bacterial resistance to antimicrobial therapy. Antimicrob. Agents Chemother. 36(7), 1347–1351.CrossRefGoogle Scholar
  12. 12.
    Brown, M. R. W., Allison, D. G., and Gilbert, P. (1988) Resistance of bacterial biofilms to antibiotics: a growth related effect? J. Antimicrob. Chemother. 22, 777–780.CrossRefGoogle Scholar
  13. 13.
    Nickel, J. C., Ruseska, I., Wright, J. B., and Costerton, J. W. (1985) Tobramycin resistance of cells of Pseudomonas aeruginosa growing as a biofilm on urinary catheter material. Antimicrob. Agents Chemother. 27, 619–624.CrossRefGoogle Scholar
  14. 14.
    Marshall, K. C. (1994) Microbial adhesion in biotechnological processes. Curr. Opin. Biotechnol. 5, 296–301.CrossRefGoogle Scholar
  15. 15.
    Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., and Lappin-Scott, H. M. (1995) Microbial biofilms. Annu. Rev. Microbiol. 49, 711–745.CrossRefGoogle Scholar
  16. 16.
    Hoyle, B., Jass, J., and Costerton, J. W. (1990) The biofilm glycocalyx as a resistance factor. J. Antimicrob. Chemother. 26, 1–6.CrossRefGoogle Scholar
  17. 17.
    Bale, M. J., Fry, J. C., and Day, M. J. (1988) Transfer and occurrence of large mercury resistance plasmids in river epilithon. Appl. Environ. Microbiol. 54, 972–978.Google Scholar
  18. 18.
    Lappin-Scott, H. M., Costerton, J. W., and Marrie, T. J. (1992) Biofilms and biofouling, in Encyclopaedia of Microbiology, Academic, pp. 277.Google Scholar
  19. 19.
    Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D., and Lappin-Scott, H. M. (1995). Microbial Biofilms. Ann. Rev. Micro. 49, p713.CrossRefGoogle Scholar
  20. 20.
    Bryers, J. D. (1994) Biofilms and the technological implications of microbial cell adhesion. Colloids Surfaces B: Biointerfaces 2, 9–23.CrossRefGoogle Scholar
  21. 21.
    Marshall, K. C. (1992) Biofilms: an overview of bacterial adhesion, activity and control at surfaces. ASM News 58(4), 202–207.Google Scholar
  22. 22.
    Geesey, G. G., Stupy, M. W., and Bremer, P. J. (1992) The dynamics of biofilms. International Biodeteriation and Biodegradation 30, 135–154.CrossRefGoogle Scholar
  23. 23.
    Lappin-Scott, H. M. and Costerton, J. W. (1989) Bacterial biofilms and surface fouling. Biofouling 1, 323–342.CrossRefGoogle Scholar
  24. 24.
    MacLeod, F. A., Guiot, S. R., and Costerton, J. W. (1995) Electron microscopic examination of the extracellular polymeric substances in anaerobic granular biofilms. World J. Microbiol. Biotechnol. 11, 481–485.CrossRefGoogle Scholar
  25. 25.
    Robinson, P. J., Walker, J. T., Keevil, C. W., and Cole, J. (1995) Reporter genes and fluorescent probes for studying the colonisation of biofilms in a drinking water supply line by enteric bacteria. FEMS Microbiol. Lett. 129, 183–188.CrossRefGoogle Scholar
  26. 26.
    LeChevallier, M. W., Babcock, T. M., and Lee, R. G. (1987) Examination and characterisation of distribution system biofilms. Appl. Environ. Microbiol 53(12), 2714–2724.Google Scholar
  27. 27.
    Walker, J. T., Rogers, J., and Keevil, C. W. (1993) An investigation of the efficacy of a bromine-containing biocide on an aquatic consortium of planktonic and biofilm microorganisms including Legionella pneumophila. Biofouling 8, 47–54.CrossRefGoogle Scholar
  28. 28.
    Goldmann, D. A. and Pier, G. B. (1993) Pathogenesis of infections related to intravascular catheterisation. Clin. Microbiol. Rev. 6(2), 176–192.Google Scholar
  29. 29.
    Anwar, H. and Costerton, J. W. (1992) Effective use of antibiotics in the treatment of biofilm-associated infections. ASM News 58(12), 665–668.Google Scholar
  30. 30.
    Jones, R. N., Barry, A. L., Gavan, T. L., and Washington, J. A. (1985) Susceptibility tests: microdilution and macrodilution broth procedures, in Manual of Clinical Microbiology (Lennette, E. H., Balows, A., Hausler, W. J., and Shadomy, H. J., eds.), ASM, Washington, DC, pp. 972–977.Google Scholar
  31. 31.
    Amabile-Cuevas, C. F., Cardenas-Garcia, M., and Ludgar, M. (1995) Antibiotic resistance. American Scientist 83, 320–329.Google Scholar
  32. 32.
    Eighmy, T. T., Arwa, J., deRome, L., et al. (1992) Controlled release of antifouling coatings. II. The effects of controlled release of 2,4-dinitrophenolate and benzoate on marine biofilm development and metabolic activity. Biofouling 6, 147–163.CrossRefGoogle Scholar
  33. 33.
    Gabriel, M. M., Mayo, M. S., May, L. L., Simmons, R. B., and Ahearn, D. G. (1996) In vitro evaluation of the efficacy of a silver-coated catheter. Curr. Microbiol. 33, 1–5.CrossRefGoogle Scholar
  34. 34.
    Jones, C. R., Handley, P. S., Robson, G. D., Eastwood, I. M., and Greenhalgh, M. (1996) Biocides incorporated into plasticised polyvinylchloride reduce adhesion of Pseudomonas fluorescens BL146 and substratum hydrophobicity. J. Appl. Bacteriol. 81, 553–560.Google Scholar
  35. 35.
    Yu, F. P., Pyle, B. H., and McFeters, G. A. (1993) A direct viable count method for the enumeration of attached bacteria and assessment of biofilm disinfection. J. Microbiol. Methods 17, 167–180.CrossRefGoogle Scholar
  36. 36.
    Huang, C. T., Yu, F. P., McFeters, G. A., and Stewart, P. S. (1995) Non-uniform spatial patterns of respiratory activity within biofilms during disinfection. Appl. Environ. Microbiol. 61(6), 2252–2256.Google Scholar
  37. 37.
    Suci, P. A., Mittelman, M. W., Yu, F. P., and Geesey, G. G. (1994) Investigation of ciprofloxacin penetration into Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 38(9), 2125–2133.CrossRefGoogle Scholar
  38. 38.
    deBeer, D., Srinivasan, R., and Stewart, P. S. (1994) Direct measurement of chlorine penetration into biofilms during disinfection. Appl. Environ. Microbiol. 60(12), 4339–4344.Google Scholar
  39. 39.
    Gilbert, P. (1995) The value of in-vitro models to the study of biofilms, in The Life and Death of Biofilm (Wimpenny, J., Handley, P., Gilbert, P., and Lappin-Scott, H. M., eds.), Cardiff, BioLine, Cardiff, UK, pp. 13–16.Google Scholar
  40. 40.
    Gilbert, P. and Allison, D. G. (1993) Laboratory methods for biofilm production, in Microbial biofilms: formation and control (Denyer, S. P., Gorman, S. P., and Sussman, M., eds.), Blackwell Scientific, Oxford, UK, pp. 29.Google Scholar
  41. 41.
    McCoy, J. C., Bryers, J. D., Robbins, J., and Costerton, J. W. (1981) Observations in fouling biofilm formation. Can. J. Microbiol. 27, 910–917.CrossRefGoogle Scholar
  42. 42.
    Schalkowsky, S. and Hunt, L. G. (1995) Assessment of therapeutic potential by means of a probability model of antimicrobial action. J. Antimicrob. Chemother. 35, 31–52.CrossRefGoogle Scholar
  43. 43.
    Lawrence, J. R. and Caldwell, D. E. (1987) Behaviour of bacterial stream populations within the hydrodynamic boundary layers of surface microenvironments. Microb. Ecol. 87(14), 15–27.CrossRefGoogle Scholar
  44. 44.
    Caldwell, D. E., and Lawrence, J. R. (1995) Study of attached cells in continuous-flow slide culture, in Handbook of Laboratory Model Systems for Microbial Ecosystems, pp. 117–138.Google Scholar
  45. 45.
    LeChevallier, M. W., Cawthon, C. D., and Lee, R. G. (1988) Inactivation of biofilm bacteria. Appl. Environ. Microbiol. 54(10), 2492–2499.Google Scholar
  46. 46.
    Gilbert, P., Allison, D. G., Evans, D. J., Handley, P. S., and Brown, M. R. W. (1989) Growth rate control of adherent bacterial populations. Appl. Environ. Microbiol. 55, 1308–1311.Google Scholar
  47. 47.
    Gjaltema, A., Arts, P. A. M., van Loosdrecht, M. C. M., Kuenen, J. G., and Heijnen, J. J. (1994) Heterogeneity of biofilms in rotating annular reactors: occurrence, structure and consequences. Biotech. Bioeng. 44, 194–204.CrossRefGoogle Scholar
  48. 48.
    Peters, A. C. and Wimpenny, J. W. T. (1988) A constant depth laboratory film fermenter. Biotech. Bioeng. 32, 263–270.CrossRefGoogle Scholar
  49. 49.
    Kinniment, S. L. and Wimpenny, J. W. T. (1990) Biofilms and biocides. International Biodeterior. 26, 181–194.CrossRefGoogle Scholar
  50. 50.
    Geesey, G. G. and White, D. C. (1990) Determination of bacterial growth and activity at solid-liquid interfaces. Annu. Rev. Micro. 44, 579–602.CrossRefGoogle Scholar
  51. 51.
    Keevil, C. W. and Walker, J. T. (1992) Normarski DIC microscopy and image analysis of biofilms. Binary 4, 92–95.Google Scholar
  52. 52.
    Nivens, D. E., Palmer, R. J., and White, D. C. (1995) Continuous nondestructive monitoring of microbial biofilms: a review of analytical techniques. J. Ind. Microbiol. 15, 263–276.CrossRefGoogle Scholar
  53. 53.
    Marshall, K. C., Stout, R., and Mitchell, R. (1971) Selective sorption of bacteria from seawater. Can. J. Microbiol. 17, 1413–1416.CrossRefGoogle Scholar
  54. 54.
    Davies, D. G., Chakrabarty, A. M., and Geesey, G. G. (1993) Exopolysaccharide production in biofilms: substratum activation of alginate gene expression by Pseudomonas aeruginosa. Appl. Environ. Microbiol. 59(4), 1181–1186.Google Scholar
  55. 55.
    Prescott, L. M., Harley, J. P., and Klein, D. A., eds. (1996) The study of microbial structure: microscopy and specimen preparation, in Microbiology. Wm. C. Brown, Oxford, UK, pp. 20–39.Google Scholar
  56. 56.
    Beveridge, T. J., Popkin, T. J., and Cole, R. M. (1994) Electron microscopy, in Methods for General and Molecular Bacteriology (Gerhardt, P., Murray, R. G. E., Wood, W. A., and Krieg, N. R, eds.), ASM, Washington, DC., pp. 42–70.Google Scholar
  57. 57.
    Surman, S. B., Walker, J. T., Goddard, D. T., et al. (1996) Comparison of microscope techniques for the examination of biofilms. J. Microbiol. Methods 25, 57–70.CrossRefGoogle Scholar
  58. 58.
    Sutton, N. A., Hughes, N., and Handley, P. S. (1994) A comparison of conventional SEM techniques, low temperature SEM and the electroscan wet scanning electron microscope to study the structure of a biofilm of Streptococcus crista CR3. J. Appl. Bacteriol. 76, 448–454.CrossRefGoogle Scholar
  59. 59.
    Bremer, P. J., Geesey, G. G., and Drake, B. (1992) Atomic force microscopy examination of the topography of a hydrated bacterial biofilm on a copper surface. Curr. Microbiol. 24, 223–230.CrossRefGoogle Scholar
  60. 60.
    Lauvvik, T. and Bakke, R. (1994) Biofilm thickness measurements by variance analysis of optical images. J. Micro. Methods 20, 219–224.CrossRefGoogle Scholar
  61. 61.
    Caldwell, D. E., Korber, D. R., and Lawrence, J. R. (1993) Analysis of biofilm formation using 2D verses 3D digital imaging. J. Appl. Bacteriol. 74S, 52S–66S.CrossRefGoogle Scholar
  62. 62.
    Stewart, P. S., Camper, A. K., Handran, S. D., Tuang, C.-T., and Warnecke, M. (1997) Spatial distribution and coexistence of Klebsiella pneumonia and Pseudomonas aeruginosa in biofilms. Microb. Ecol. 33, 2–10.CrossRefGoogle Scholar
  63. 63.
    Schaule, G., Flemming, H.-C., and Ridgway, H. F. (1993) Use of 5-Cyano-2, 3-Ditolyl Tetrazolium chloride for quantifying planktonic and sessile respiring bacteria in drinking water. Appl. Environ. Microbiol. 59(11), 3850–3857.Google Scholar
  64. 64.
    Yu, P. F. and McFeters, G. A. (1994) Physiological responses of bacteria in biofilms to disinfection. Appl. Environ. Microbiol. 60(7), 2462–2466.Google Scholar
  65. 65.
    Rodriguez, G. G., Phipps, D., Ishiguro, K., and Ridgway, H. F. (1992) Use of a fluorescent redox probe for direct visualisation of actively respiring bacteria. Appl. Environ. Microbiol. 58(6), 1801–1808.Google Scholar
  66. 66.
    Yu, F. P., Callis, G. M., Stewart, P. S., Griebe, T., and McFeters, G. A. (1994) Cryosectioning of biofilms for microscopic examination. Biofouling 8, 85–91.CrossRefGoogle Scholar
  67. 67.
    Dempsey, M. J. (1981) Marine bacterial fouling: a scanning electron microscope study. Marine Biol. 61, 305–315.CrossRefGoogle Scholar
  68. 68.
    Brading, M. G., Boyle, J., and Lappin-Scott, H. M. (1995) Biofilm formation in laminar flow using Pseudomonas fluorescens EX101. J. Ind. Microbiol. 15, 297–304.CrossRefGoogle Scholar
  69. 69.
    Camper, A. K., Jones, W. L., and Hayes, J. T. (1996) Effect of growth conditions and substratum composition on the persistence of coliforms in mixed-population biofilms. Appl. Environ. Microbiol. 62(11), 4014–4018.Google Scholar
  70. 70.
    Hamilton, W. A. (1995) Biofilms and microbially influenced corrosion, in Microbial Biofilms (Lappin-Scott, H. M., and Costerton, J. W., eds.), Cambridge University Press, Cambridge, UK, pp. 171–182.CrossRefGoogle Scholar
  71. 71.
    Stoodley, P., deBeer, D., and Lewandowski, Z. (1994) Liquid flow in biofilm systems. Appl. Environ. Microbiol. 60(8), 2711–2716.Google Scholar
  72. 72.
    deBeer, D., Stoodley, P., and Lewandowski, Z. (1993) Effects of biofilm structures on oxygen distribution and mass transport. Biotech. Bioeng. 43, 1131–1138.CrossRefGoogle Scholar
  73. 73.
    Lawrence, J. R., Korber, D. R., Hoyle, B. D., Costerton, J. W., and Caldwell, D. E. (1991) Optical sectioning of microbial biofilms. J. Bacteriol. 173(20), 6558–6567.Google Scholar
  74. 74.
    Lewandowski, Z., Lee, W. G., Characklis, W. G., and Little, B. (1987) Dissolved oxygen and pH microelectrode measurements at water-immersed metal surfaces. Corrosion Sci. 45(2), 92–98.CrossRefGoogle Scholar
  75. 75.
    Jansen, B. and Kohnen, W. (1995) Prevention of biofilm formation by polymer modification. J. Ind. Microbiol. 15, 391–396.CrossRefGoogle Scholar
  76. 76.
    Quignon, F., Sardin, M., Kiene, L., and Schwartzbrod, L. (1997) Poliovirus-1 inactivation and interaction with biofilm: a pilot-scale study. Appl. Environ. Microbiol. 63(3), 978–982.Google Scholar
  77. 77.
    Jiang, H.-Q., Chen, Y.-F., Li, A. N., and Li, Z. D. (1994) Clinical burn wound infection caused by L-forms of Staphylococcus aureus. Burns 20(1), 83–84.CrossRefGoogle Scholar
  78. 78.
    McLean, R. J. C., Nickel, J. C., and Olson, M. E. (1995) Biofilm associated urinary tract infections, in Microbial Biofilms (Lappin-Scott, H. M. and Costerton, J. W., eds.), Cambridge University Press, Cambridge, UK, pp. 261–273.CrossRefGoogle Scholar
  79. 79.
    Costerton, J. W., and Lappin-Scott, H. M. (1995) Introduction to microbial biofilms, in Microbial Biofilms (Lappin-Scott, H. M. and Costerton, J. W., eds.), Cambridge University Press, Cambridge, UK, pp. 1–11.CrossRefGoogle Scholar
  80. 80.
    Raad, I., Darouiche, R., Hachem, R., Sacilowski, M., and Bodey, G. P. (1995) Antibiotics and prevention of microbial colonisation of catheters. Antimicrob. Agents Chemother. 39(1), 2397–2400.CrossRefGoogle Scholar
  81. 81.
    Thornsberry, C. and Sherris, J. C. (1985) General considerations, in Manual of Clinical Microbiology (Lennette, E. H., Balows, A., Hausler, W. J., and Shadomy, H. J., eds.), ASM, Washington, DC, pp. 959–966.Google Scholar
  82. 82.
    Maki, D. (1994) Infections caused by intravascular devices used for infusion therapy: pathogenesis, prevention and management, in Infections Associated with Indwelling Medical Devices (Bisno, A. L. and Waldvogel, F. A., eds.), American Society for Microbiology, Washington, DC, pp. 155–212.Google Scholar
  83. 83.
    Christensen, G. D., Baldassarri, L., and Simpson, W. A. (1994) Colonisation of medical devices by coagulase-negative staphylococci, in Infections Associated with Indwelling Medical Devices (Bisno, A. L. and Waldvogel, F. A., eds.), American Society for Microbiology, Washington, DC, pp. 45–78.Google Scholar
  84. 84.
    Bremer, P. J. and Geesey, G. G. (1991) An evaluation of biofilm development utilising non-destructive attenuated total reflectance fourier transform infrared spectroscopy. Biofouling 3, 89–100.CrossRefGoogle Scholar
  85. 85.
    Rogers, J. and Keevil, C. W. (1995) Species diversity in developing freshwater biofilms, in The Life and Death of Biofilm (Wimpenny, J., Nichols, W., Stickler, D., and Lappin-Scott, H., eds.), Bioline, Cardiff, UK, pp. 77–82.Google Scholar
  86. 86.
    Williams, H. G., Day, M. J., Fry, J. C., and Stewart, G. J. (1996) Natural transformation in river epilithon. Appl. Environ. Microbiol. 62(8), 2994–2998.Google Scholar
  87. 87.
    Wimpenny, J. W. T. (1995) On the nature and validity of models, in The Life and Death of Biofilm (Wimpenny, J., Nichols, W., Stickler, D., and Lappin-Scott, H., eds.), BioLine, Cardiff, pp. 1–8.Google Scholar
  88. 88.
    Addy, M., Slayne, M. A., and Wade, W. G. (1992) The formation and control of dental plaque—an overview. J. Appl. Bacteriol. 73, 269–278.CrossRefGoogle Scholar
  89. 89.
    Busscher, H. J. and Weerkamp, A. H. (1987) Specific and non-specific interactions in bacterial adhesion to solid substrata. FEMS Microbiol. Rev. 46, 165–173.CrossRefGoogle Scholar
  90. 90.
    Brown, M. W. R. and Gilbert, P. (1995) Some perspectives on preservation and disinfection in the present-day. Int. Biodet. Biodeg. 36(3-4), 219–226.CrossRefGoogle Scholar
  91. 91.
    Caldwell, D. E., Korber, D. R., and Lawrence, J. R. (1992) Confocal laser microscopy and digital image analysis in microbial ecology, in Advances in Microbial Ecology (Marshall, K. C., ed.), Plenum, New York, pp. 1–67.CrossRefGoogle Scholar
  92. 92.
    McFeters, G. A., Yu, F. P., Pyle, B. H., and Stewart, P. S. (1995) Physiological methods to study biofilm disinfection. J. Ind. Microbiol. 15, 333–338.CrossRefGoogle Scholar
  93. 93.
    Wolfaardt, G. M., Lawrence, J. R., Robarts, R. D., and Caldwell, D. E. (1994) The role of interactions, sessile growth and nutrient amendments on the degradative efficiency of a microbial consortium. Can. J. Microbiol. 40, 331–340.CrossRefGoogle Scholar
  94. 94.
    Ronot, X., Benel, L., Adolphe, M., and Mounolou, J. (1986) Mitochondrial analysis in living cells: the use of rhodamine 123 and flow cytometry. Biol. Cell 57, 1–8.CrossRefGoogle Scholar
  95. 95.
    Matsuyama, T. (1984) Staining of living bacteria with rhodamine 123. FEMS Microbiol. Lett. 21, 153–157.CrossRefGoogle Scholar
  96. 96.
    Pyle, B. H., Broadway, S. C., and McFeters, G. A. (1995) Factors affecting the determination of respiratory activity on the basis of Cyanoditolyl Tetrazolium Chloride reduction with membrane filtration. Appl. Environ. Microbiol. 61(12), 4304–4309.Google Scholar
  97. 97.
    White, G. F., Russell, N. J., Marchesi, J. P., and House, W. A. (1993) Surfactant adsorption, bacterial attachment and biodegradation in river sediment: a three-way interaction, in Bacterial Biofilms and Their Control in Medicine and Industry (Wimpenny, J., Nichols, W., Stickler, D., and Lappin-Scott, H., eds.), BioLine, Cardiff, pp. 121–126.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1999

Authors and Affiliations

  • Joanna C. Rayner
    • 1
  • Hilary M. Lappin-Scott
    • 1
  1. 1.Environmental Microbiology Research Group, Department of Biological SciencesUniversity of ExeterExeterUK

Personalised recommendations