Analysis of DNA Sequences

  • Mathew Upton
Part of the Methods in Biotechnology book series (MIBT, volume 12)


Molecular biological methods are now commonly used to detect bacteria in diverse environments ranging from soils, sediments, and sludges (1,2) to plant (3) and mammalian (4,5) tissue and food or water samples (6,7). The techniques most widely used in detection methods are the polymerase chain reaction (PCR) and oligonucleotide probing. PCR exploits primers targeting a region of ribosomal RNA (rRNA) known to be specific to the organism of interest (8), or functional genes for metabolic pathways (9) and toxins (10) exclusive to certain bacteria, and facilitates qualitative or quantitative detection of target organisms in natural environments (11). Oligonucleotides can be labeled with radionucleotides or with chemiluminescent or fluorescent reporter molecules and used to probe nucleic acids extracted from samples (4), again giving qualitative or quantitative information regarding the occurrence of target organisms. In addition, fluorescently labeled olignucleotides are increasingly being used in combination with flow cytometry for cell counting or sorting (12,13), and with confocal laser scanning microscopy (2,14) to generate in situ data revealing close spatial associations of organisms in environmental samples.


Polymerase Chain Reaction Primer Ribosomal Database Project Target Organism Sequence File Floppy Disk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Wagner, M., Rath., G., Amann, R., Koops, H. P., and Schleifer, K.-H. (1995) In-situ identification of ammonia oxidising bacteria. Syst. Appl. Microbiol. 18, 251–264.CrossRefGoogle Scholar
  2. 2.
    Siering, P. L. and Ghiorse, W. C. (1997) Development and application of 16S rRNA-targeted probes for detection of iron-and manganese-oxidizing sheathed bacteria in environmental samples. Appl. Environ. Microbiol. 63, 644–651.Google Scholar
  3. 3.
    Lacourt, I. and Duncan, J. M. (1997) Specific detection of Phytophthora nicotinanae using the polymerase chain reaction and primers based on the DNA sequence of its elicitin gene ParA1. Eur. J. Plant Pathol. 103, 73–83.CrossRefGoogle Scholar
  4. 4.
    Hoshina, S., Kahn, S. M., Jiang, W., Green, P. H. R., Neu, H. C., Chin, N., Morotomi, M., Logerfo, P., and Weinstein, B. (1990) Direct detection and amplification of Helicobacter pylori ribosomal 16S gene from gastric endoscopic biopsies. Diagn. Microbiol. Infect. Dis. 13, 473–479.CrossRefGoogle Scholar
  5. 5.
    Ho, S. A., Hoyle, J. A., Lewis, F. A., Secker, A. D., Cross, D., Mapstone, N. P., Dixon, M. F., Wyatt, J. I., Tompkins, D. S., Taylor, G. R., and Quirke, P. (1991) Direct polymerase chain reaction test for detection of Helicobacter pylori in humans and animals. J. Clin. Microbiol. 29, 2543–2549.Google Scholar
  6. 6.
    Yamamoto, H., Hashimoto, Y., and Ezaki, T. (1993) Comparison of detection methods for Legionella species in environmental samples by colony isolation, fluorescent antibody staining and polymerase chain reaction. Microbiol. Immunol. 37, 617–622.CrossRefGoogle Scholar
  7. 7.
    Olsen, J. E., Aabo, S., Hill, W., Notermans, S., Wernars, K., Granum, P. E., Popovic, T., Rasmussen, H. N., and Olsvik, O. (1995) Probes and polymerase chain reaction for detection of food-borne bacterial pathogens. Int. J. Food Microbiol. 28, 1–78.CrossRefGoogle Scholar
  8. 8.
    Honerlage, W., Hahn, D., Zepp, K., Zeyer, J., and Normand, P. (1994) A hypervariable 23S rRNA region provides a discriminating target for specific characterisation of uncultured and cultured Frankia. Syst. Appl. Microbiol. 17, 433–443.CrossRefGoogle Scholar
  9. 9.
    Joshi, B. and Walia, S. (1996) PCR amplification of catechol 2,3-dioxygenase gene sequences from naturally occurring hydrocarbon degrading bacteria isolated from petrolium hydrocarbon contaminated groundwater. FEMS Microbiol. Ecol. 19, 5–15.CrossRefGoogle Scholar
  10. 10.
    Fach, P., Hauser, D., Guillou, J. P., and Popoff, M. R. (1993) Polymerase chain reaction for the rapid identification of Clostridium botulinum type A strains and detection in food samples. J. Appl. Bacteriol. 75, 234–239.CrossRefGoogle Scholar
  11. 11.
    Butendieck, B., Morales, P., Figueroa, J., Concha, M., and Leon, G. (1995) Specific gene amplification as a means to detect Renibacterium salmoninarum. Archivos De Medicina Venterinaria 27, 47–54.Google Scholar
  12. 12.
    Vesey, G., Narai, J., Ashbolt, N., Williams, K., and Veal, D. (1994) Detection of specific microorganisms in environmental samples using flow cytometry. Methods Cell Biol. 42, 489–522.Google Scholar
  13. 13.
    Thomas, J. C., Desrosiers, M., St-Pierre, Y., Lirette, P., Bisaillon, J. G., Beaudet, R., and Villemur, R. (1997) Quantitative flow cytometric detection of specific microorganisms in soil samples using rRNA targeted fluorescent probes and ethidium bromide. Cytometry 3, 224–232.CrossRefGoogle Scholar
  14. 14.
    Assmus, B., Hutzler, P., Kirchhof, G., Amann, R., Lawrence, J. R., and Hartmann A. (1996) In situ localization of Azospirillum brasilense in the rhizosphere of wheat with fluorescently labelled, rRNA targeted oligonucleotide probes and scanning confocal laser microscopy. Appl. Environ. Microbiol. 61, 1013–1019.Google Scholar
  15. 15.
    Swofford, D. (1991) PAUP: phylogenetic analysis using parsimony, version 3.0. Computer program distributed by Illinois Natural History Survey, Champaign, IL.Google Scholar
  16. 16.
    Hales, B. A., Edwards, C., Ritchie, D. A., Hall, G. H., Pickup, R. W., and Saunders, J. R. (1996) Isolation and identification of methanogen-specific DNA from blanket bog peat using PCR amplification and sequence analysis. Appl. Environ. Microbiol. 62, 668–675.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1999

Authors and Affiliations

  • Mathew Upton
    • 1
  1. 1.School of Biological SciencesUniversity of LiverpoolLiverpoolUK

Personalised recommendations