Skip to main content

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 21))

  • 612 Accesses

Abstract

Adenoviruses encode a cysteme endopeptidase synthesized late in virus infection which is essential for virlon maturation and infectivity (1,2). The enzyme 1s encapsidated (approx 20 molecules per vinon) and may also have a role during decapsidation (35). Although there are approx 100 adenovirus serotypes known to infect vertebrates, so far only the human adenovirus type 2 (Ad2) enzyme has been studied. The recombinant protein expressed in Escherichia coli and insect cells has been purified and characterized (3,68). The enzyme is a 204-residue monomer of 24,838 Dalton with a pI of 10.59 and optimal activity at 45°C and pH 8.0. The recombinant enzyme is stimulated by an 11-amino acid cleavage fragment from viral protein pre-VI. GVQSLKRRRCF. The peptide is presumed to regulate enzyme activity in vivo during virus infection. It is bound to C104 on the enzyme via a disulphide bridge (9). Mutational analysis and X-ray chrystallography identified the active-site triad as H54-C122-E71 (811). The substrate specificity of the enzyme is (M,I,L)XGG-X or (M,I,L)XGX-G (12). Alkylating agents and E64 inhibit the protease and virus infection as expected (13). Specific inhibitors are not yet available. To date, 17 protease genes have been sequenced in different virus serotypes. The translated amino acid sequences range from 201 to 214 residues and show both variable and highly conserved regions (1,11).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weber, J. M. (1995) The adenovirus endopeptidase and its role in virus infection, in Molecular Repertoire of Adenoviruses (Doerfler, W. and Petra Bohm, P, eds), Curr Topics Microbiol Immunol. 199/I pp.227–235

    Google Scholar 

  2. Weber, J. M. and Tihanyi, K. (1994) Adenoviruses endopeptidases Methods Enzymol 244D, 595–604.

    Article  Google Scholar 

  3. Anderson, C. W. (1990) The protemase polypeptide of adenovirus serotype 2 virtons. Virology 177, 259–272.

    Article  PubMed  CAS  Google Scholar 

  4. Cotten, M. and Weber, J. M. (1995) The adenovirus protease is required for virus entry into host cells. Virology 213, 494–502

    Article  PubMed  CAS  Google Scholar 

  5. Greber, U. F., Webster, P., Weber, J., and Helenius, A. (1996) The role of the adenovirus protease in virus entry into cells EMBO J 15, 1766–1777.

    PubMed  CAS  Google Scholar 

  6. Houde, A. and Weber, J. M. (1990) Adenovirus protemases’ comparison of amino acid sequences and expression of the cloned cDNA in Escherichia coli. Gene 88, 269–273

    CAS  Google Scholar 

  7. Tihanyl, K., Bourbonniere, M., Houde, A., Rancourt, C., and Weber, J. M. (1993) Isolation and properties of the adenovirus type 2 protemase J Biol Chem 268, 1780–1785

    Google Scholar 

  8. Webster, A., Hay, R. T., and Kemp, G (1993) The adenovirus protease is activated by a virus-coded disulphide-linked peptide. Cell 72, 97–104

    Article  PubMed  CAS  Google Scholar 

  9. Ding, J., McGrath, W. J., Sweet, R. M., and Mangel, W. F. (1996) Crystal structure of the human adenovirus protenase with its 11 ammo acid cofactor. EMBO J 15, 1778–1783.

    PubMed  CAS  Google Scholar 

  10. Grierson, A. W., Nicholson, R., Talbot, P., Webster, A., and Kemp, G. (1994) The protease of adenovirus serotype 2 requires cysteine residues for both activation and catalysis. J. Gen. Virol. 75, 2761–2764.

    Article  PubMed  CAS  Google Scholar 

  11. Rancourt, C., Tihanyi, K., Bourbonniere, M., and Weber, J. M. (1994) Identification of active-site residues of the adenovirus endopeptidase Proc Natl Acad Sci. USA 91, 844–847

    Article  PubMed  CAS  Google Scholar 

  12. Webster, A., Russell, W. C, and Kemp, G. D. (1989) Characterization of the adenovirus protemase, substrate specificity J Gen Virol 70, 3215–3223

    Article  PubMed  CAS  Google Scholar 

  13. Sircar, S., Keyvani-Amineh, H., and Weber, J. M. (1996) Inhibition of adenovirus infection with protease inhibitors. Antiviral Res 30, 147–153

    Article  PubMed  CAS  Google Scholar 

  14. Mangel, W. F., McGrath, W. J., Toledo, D L., and Anderson, C. W. (1993) Viral DNA and a viral peptide can act as cofactors of adenovirus virton protemase activity. Nature 361, 274,275

    Article  Google Scholar 

  15. Diouri, M., Geoghegan, K. F, and Weber, J. M. (1995) Functional characterization of the adenovirus proteinase using fluorogenic substrates. Protein Peptide Lett 6, 363–370.

    Google Scholar 

  16. Mangel, W. F., Toledo, D. L., Brown, M. T., Martin, J. H., and McGrath, W. J. (1996) Characterization of three components of human Adenovirus proteinase activity in vitro. J Biol Chem 271, 536–543.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Weber, J.M. (1999). Adenovirus Protease. In: Wold, W.S.M. (eds) Adenovirus Methods and Protocols. Methods in Molecular Medicine™, vol 21. Springer, Totowa, NJ. https://doi.org/10.1385/0-89603-551-4:277

Download citation

  • DOI: https://doi.org/10.1385/0-89603-551-4:277

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-551-5

  • Online ISBN: 978-1-59259-603-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics