Skip to main content

GPI-Anchored Fusion Proteins

  • Protocol
Book cover Animal Cell Biotechnology

Part of the book series: Methods in Biotechnology™ ((MIBT,volume 8))

  • 1311 Accesses

Abstract

Although most integral membrane proteins are bound to the lipid bilayer by a hydrophobic polypeptide transmembrane domain, a small functionally diverse group of proteins is uniquely anchored to the plasma membrane by the covalent attachment of a complex phospolipid anchor to the carboxyl terminus of the protein. This glycosylphosphatidyl inositol (GPI) anchor consists of a hydrophobic phospholipid, phosphatidylinositol, which attaches the carboxyl end of the protein to the outer lipid layer of the plasma membrane via a variable glycan chain and phosphoethanolamine (1,2). The functional role of the anchor is not clearly established, and proposals range from cell motility to cell signaling (1,3,4). The GPI-anchored protein can be released from the cell membrane by the action of a specific bacterial phospholipase, phosphatidylinositol phospholipase C (PI-PLC) (5). The PI-PLC cleaves the anchor at the phosphodiester bond between the phophinositol group and the lipid portion of the anchor (Fig. 1). Diacyglycerol is left in the outer cell membrane, while the protein is released in a water-soluble form into the media with the hydrolyzed portion of the GPI anchor. Therefore, it is possible to harvest natural and recombinant GPI-anchored proteins in a controlled fashion by removing the cell growth medium and replacing it with a much smaller volume of PI-PLC solution (68). This procedure yields a concentrated preparation of the desired protein that is relatively free of contaminating proteins contributed by the cells or the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferguson, M. A. J. and Williams, A. F. (1988) Cell-surface anchoring of proteins via glycosyl-phosphatidylinositol structures. Annu. Rev. Biochem. 57, 285–320.

    Article  CAS  Google Scholar 

  2. Low, M. G. (1989) The glycosyl-phosphatidylinositol anchor of membrane proteins. Biochim. Biophys. Acta 988, 427–454.

    CAS  Google Scholar 

  3. Biovin, P. and Deluanay, J. (1991) La membrane du globule rouge. Xl e Congrès de la Societé Francaise d’Hématologie 3(1), 125–128.

    Google Scholar 

  4. Lisanti, M. P., Rodriguez-Boulan, E., and Saltiel, A. R. (1990) Emerging functional roles for the glycosyl-phosphatidylinositol membrane protein anchor. J. Membr. Biol. 117, 1–10.

    Article  CAS  Google Scholar 

  5. Sundler, R., Alberts, A. W., and Vagelos, P. R. (1978) Enzymatic properties of phoshatidylinositol inositolphosphohydrolase from Bacillus cereus. J. Biol. Chem. 253, 4175–4179.

    CAS  Google Scholar 

  6. Kennard, M. L., Food, M. R., Jefferies, W. A., and Piret, J. M. (1993) Controlled release process to recover heterologous glycosylphosphatidylinositol membrane anchored proteins from CHO cells. Biotechnol. Bioeng. 42, 480–486.

    Article  CAS  Google Scholar 

  7. Kennard, M. L. and Piret, J. M. (1994) Glycolipid membrane anchored recombinant protein production from CHO cells cultured on porous microcarriers. Biotechnol. Bioeng. 44, 45–54.

    Article  CAS  Google Scholar 

  8. Kennard, M. L. and Piret, J. M. (1995) Membrane anchored protein production from spheroid, porous, and solid microcarrier Chinese hamster ovary cell cultures. Biotechnol. Bioeng. 47, 550–556.

    Article  CAS  Google Scholar 

  9. Doering, T. A., Masterson, W. J., Hart, G. W., and Englund, P. T. (1990) Biosynthesis of glycosy-phosphatidylinositol membrane anchors. J. Bio. Chem. 265(2), 611–614.

    CAS  Google Scholar 

  10. Bangs, J. A., Hereld, D., Krakow, J. L., Hart, G. W., and Englund, P. T. (1985) Rapid Processing of the carboxyl terminus of the trapanosome variant surface glycoprotein. Proc. Natl. Acad. Sci. USA 82, 3207–3211.

    Article  CAS  Google Scholar 

  11. Moran, P. and Caras, I. W. (1991) Fusion sequence from non-anchored proteins to generate a fully functional signal for glycophophatidylinositol membrane anchor attachment. J. Cell Biol. 115(6), 1595–1600.

    Article  CAS  Google Scholar 

  12. Boothroyd, J. C., Paynter, C. A., Cross, G. A., Bernards, A., and Borst, P. (1981) Variant surface glycoproteins of Trapanosoma brucei are synthetised with cleavable hydrophobic sequences at the carboxy and amino termini. Nucleic Acids Res. 9, 4735–4743.

    Article  CAS  Google Scholar 

  13. Coyne, K. E., Crisci, A., and Lublin, D. M. (1993) Construction of synthetic signals for glycosyl-phosphatidylinositol achor attachment. J. Biol. Chem. 268, 6689–6693.

    CAS  Google Scholar 

  14. Caras, I. W., Weddell, G. N., Davitz, M. A., Nessenzweig, V., and Martin, D. W. (1987) Signal for attachment of a phospholipid membrane anchor in decay accelerating factor. Science 238, 1280–1282.

    Article  CAS  Google Scholar 

  15. Caras, I. W., Weddell, G. N., and Williams, S. R. (1989) Analysis of the signal for attachment of a glycophospholipid membrane anchor. J. Cell Biol. 108, 1387–1396.

    Article  CAS  Google Scholar 

  16. Moran, P., Raab, H., Kohr, W. J., and Caras, I. W. (1991) Glycophospholipid membrane anchor attachment. J. Biol. Chem. 266, 1250–1257.

    CAS  Google Scholar 

  17. Moran, P. and Caras, I. W. (1991) Fusion sequence elements from non-anchored proteins to generate fully functional signal for glycophosphatidylinositol membrane anchor attachment. J. Cell Biol. 115, 1595–1600.

    Article  CAS  Google Scholar 

  18. Moran, P. and Caras, I. W. (1994) Requirements for glycophosphatidylinositol attachment are similar but not identical in mammalian cells and parsitic protozoa. J. Cell Biol. 125, 333–343.

    Article  CAS  Google Scholar 

  19. Caras, I. W. and Weddell, G. N. (1989) Signal peptide for protein secretion directing glycophospholipid membrane anchor attachment. Science 243, 1196–1198.

    Article  CAS  Google Scholar 

  20. Eisenberg, D., Schwarz, E., Kamaromy, M., and Wall, R. (1984) Analysis of membrane and surfae protein sequences with hydrophobic moment plot. J. Mol. Biol. 179, 125–142.

    Article  CAS  Google Scholar 

  21. Food, M. R., Rothenberger, S., Gabathuler, R., Haidl, G., Reid, G., and Jefferies, W. A. (1994) Transport and expression in human melanomas of a transferrin-like glycosylphosphatidylinositol-anchored protein. J. Biol. Chem. 269, 3034–3040.

    CAS  Google Scholar 

  22. Harrison, P. T., Hutchinson, M. J., and Allen, J. M. (1994) A convenient method for the construction and expression of GPI-anchored proteins. Nucleic Acids Res. 22, 3813,3814.

    Article  CAS  Google Scholar 

  23. Whitehorn, E. A., Tate, E., Yanofsky, S. D., Kochersperger, L., Davis, A., Mortensen, R. B., Yonkovich, S., Bell, K., Dower, W. J., and Barrett, R. W. (1995) A generic method for expression and use of “tagged” soluble versions o cell surface receptors. Bio/Technology 13, 1215–1219.

    Article  CAS  Google Scholar 

  24. Lin, A. Y., Devaux, B., Green, A., Sagerstrom, C., Elliott, J. F., and Davis, M. M. (1990) Expression of T cell antigen receptor heterodimers in a lipid-linked form. Science. 249, 677–679.

    Article  CAS  Google Scholar 

  25. Lisanti, M. P., Caras, I. W., Davitz, M. A., and Rodriguez-Boulan, E. (1989) A glycophospholipid membrane anchor acts as an apical targetting signal in polarized epithelial cells. J. Cell Biol. 109, 2145–2156.

    Article  CAS  Google Scholar 

  26. Scallon, B. J., Kado-Fong, H., Nettleton, M. Y., and Kochan, J. P. (1992) A novel strategy for secreting proteins: use of phosphatidylinositol-glycan specific phospholipase D to release chimeric phosphatidyinositol-glycan anchored proteins. Bio/Technology 10, 550–556.

    Article  CAS  Google Scholar 

  27. Devaux, B., Bjorkman, P. J., Stevenson, C., Grief, C., Elliot, J. F., Sagerstrom, C., Clayberger, C., Karensky, A. M., and Davis, M. M. (1991) Generation of mono clonal antibodies against soluble human T cell receptor polypeptides. Eur. J. Immunol. 21, 2111–2119.

    Article  CAS  Google Scholar 

  28. Wettstein, D. A., Boniface, J. J., Reay, P. A., Schild, H., and Davis, M. M. (1991) Expression of a class II major histocompatibility complex (MHC) heterodimer in a lipid linked form. J. Exp. Med. 174, 219–228.

    Article  CAS  Google Scholar 

  29. Slanetz, A. E. and Bothwell, A. L.M. (1991) Heterodimeric, disulphide-linked a/b T cell receptors in solution. Eur. J. Immunol. 21, 179–183.

    Article  CAS  Google Scholar 

  30. Weber, MC., Groger, R. K., and Tykocinski, M. L. (1994) A glycophosphatidylinositol-anchored cytokinecan function as a artificial cellular adhesin. Exp. Cell Res. 210, 107–112.

    Article  CAS  Google Scholar 

  31. Sleckman, B. P., Rosenstein, Y., Igras, V. E., Greenstein, J., and Burakoff, S. J. (1991) Glycolipid-anchored form of CD4 increases intracellular adhesion but is unable to enhance T cell activation. J. Immunol. 147, 428–431.

    CAS  Google Scholar 

  32. Keller, G., Siegel, M. W., and Caras, I. W. (1992) Endocytosis of a glycophospholipid-anchored and transmembrane forms of CD4 by different endocytic pathways. EMBO J. 11, 863–874.

    CAS  Google Scholar 

  33. Sambrook, J., Fritsch, E. F., and Maniantis, T. (1990) Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Kennard, M.L., Lizee, G.A., Jefferies, W.A. (1999). GPI-Anchored Fusion Proteins. In: Jenkins, N. (eds) Animal Cell Biotechnology. Methods in Biotechnology™, vol 8. Humana Press. https://doi.org/10.1385/0-89603-547-6:187

Download citation

  • DOI: https://doi.org/10.1385/0-89603-547-6:187

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-547-8

  • Online ISBN: 978-1-59259-486-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics