Skip to main content

Adaptation of Mammalian Cells to Growth in Serum-Free Media

  • Protocol
Animal Cell Biotechnology

Part of the book series: Methods in Biotechnologyâ„¢ ((MIBT,volume 8))

Abstract

The intent of this chapter is to discuss mammalian cell adaptation procedures useful in the development of cell phenotypes compatible with extended cultivation in suspension culture, without serum, and at high cell densities. Such phenotypes are useful for the production of recombinant proteins and monoclonal antibodies for therapeutic or diagnostic applications. Emphasis will be placed on Chinese hamster ovary (CHO) cells due to their widespread use throughout the biotechnology industry. However, the general principles of cell adaptation can be applied to other animal cells, including baby hamster kidney (BHK) and hybridoma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lambert, K. J. and Birch, J. R. (1985) Cell growth media, in Animal Cell Biotechnology. Volume I. (Spier, R. E. and Griffiths, J. B., eds.), Academic Press, pp. 85–112.

    Google Scholar 

  2. Miller, W. M., Wilke, C. R., and Blanch, H. W. (1988) Transient responses of hybridoma cells to lactate and ammonia pulse and step changes in continuous culture. Bioprocess Eng. 3, 113–122.

    Article  CAS  Google Scholar 

  3. Matsumura, M., Shimoda, M., Arii, T., and Kataoka, H. (1991) Adaptation of hybridoma cells to higher ammonia concentration. Cytotechnology 7, 103–112.

    CAS  Google Scholar 

  4. Schumpp, B. and Schlaeger, E.-J. (1992) Growth study of lactate and ammonia double-resistant clones of HL-60 cells. Cytotechnology 8, 39–44.

    Article  CAS  Google Scholar 

  5. Inlow, D., Maiorella, B., and Shauger, A. E. (1992) Methods for adapting cells for increased product production through exposure to ammonia, US Patent 5,156,964.

    Google Scholar 

  6. Adamson, S. R., Drapeau, D., Luan, Y.-T., and Miller, D. A. (1996) Adaptation of mammalian cell lines to high cell densities, US Statutory Invention Registration H1532.

    Google Scholar 

  7. Hayter, P. M., Curling, M. A., Baines, A. T., Jenkins, N., Salmon, I., Strange, P. G., and Bull, A. T. (1991) Chinese hamster ovary cell growth and interferon production kinetics in stirred batch culture. Appl. Microbiol. Biotechnol. 34, 559–564.

    Article  CAS  Google Scholar 

  8. Murata, M., Eto, Y., and Shibai, H. (1988) Large-scale production of erythroid differentiation factor (EDF) by gene-engineered Chinese hamster ovary (CHO) cells in suspension culture. J. Ferment. Technol. 66(5), 501–507.

    Article  CAS  Google Scholar 

  9. Berg, D. T., McClure, D. B., and Grinnell, B. W. (1993) High-level expression of secreted proteins from cells adapted to serum-free suspension culture. BioTechniques 14(6), 972–978.

    CAS  Google Scholar 

  10. Broad, D., Boraston, R., and Rhodes, M. (1991) Production of recombinant proteins in serum-free media. Cytotechnology 5, 57–55.

    Google Scholar 

  11. Mather, J. P. (1990) Optimizing cell and culture environment for production of recombinant proteins. Methods Enzymol. 185, 567–577.

    Article  CAS  Google Scholar 

  12. Keen, M. J. and Nicholas, T. R. (1995) Development of a serum-free culture medium for the large scale production of recombinant protein from a Chinese hamster ovary cell line. Cytotechnology 17, 153–163.

    Article  CAS  Google Scholar 

  13. Perrin, P., Madbusudana, S., Gontier-Jallet, C., Petres, S., Tordo, N., and Merten, O.-W. (1995) An experimental rabies vaccine produced with a new BHK-21 suspension cell culture process: use of serum-free medium and perfusion-reactor system. Vaccine 13, 1244–1250.

    Article  CAS  Google Scholar 

  14. Sinacore, M. S., Charlebois, T. C., Harrison, S., Brennan, S., Richards, T., Hamilton, M., Scott, S., Brodeur, S., Oakes, P., Leonard, M., Switzer, M., Anagnostopoulos, A., Foster, B., Harris, A., Jankowski, M., Bond, M., Martin, S., and Adamson, S. R. (1996) CHO DUKX cell lineages preadapted to growth in serum-free suspension culture enable rapid development of cell culture processes for the manufacture of recombinant proteins. Biotechnol. Bioeng. 52, 518–528.

    Article  CAS  Google Scholar 

  15. Zang, M., Trautmann, H., Gandor, C., Messi, F., Asselbergs, F., Leist, C, Fietcher, A., and Reiser, J. (1995) Production of recombinant proteins in Chinese hamster ovary cells using protein-free cell culture medium. Biotechnology 13, 389–392.

    Article  CAS  Google Scholar 

  16. Gandor, C., Leist, C., Feichter, A., and Asselbergs, F. (1995) Amplification and expression of recombinant genes in serum-independent Chinese hamster ovary cells. FEBS Lett. 377, 290–294.

    Article  CAS  Google Scholar 

  17. Kawamoto, T., Sato, J. D., Le, A., McClure, D. B., and Sato, G. H. (1983) Development of a serum-free medium for growth of NS-1 mouse myeloma cells and its application to the isolation of NS-1 hybridomas. Anal. Biochem. 130, 445–453.

    Article  CAS  Google Scholar 

  18. Kovar, J. and Franek, F. (1984) Serum-free medium for hybridoma and parental myeloma cell cultivation: A novel composition of growth-supporting substances. Immunol. Lett. 7, 339–345.

    Article  CAS  Google Scholar 

  19. Miyaji, H., Mizukami, T., Hosoi, S., Sato, S., Fujiyoshi, N., and Itoh, S. (1990) Expression of human beta-interferon in Namalwa KJM-1 which was adapted to serum-free medium. Cytotechnology 3, 133–140.

    Article  CAS  Google Scholar 

  20. Griffiths, J. B. and Racher, A. J. (1994) Cultural and physiological factors affecting expression of recombinant proteins. Cytotechnology 15, 3–9.

    Article  CAS  Google Scholar 

  21. Assoian, R. K. (1977) Anchorage-dependent cell cycle progression. J. Cell. Biol. 136(1), 1–4.

    Article  Google Scholar 

  22. Rouslahti, E. and Reed, J. C. (1994) Anchorage dependence, integrins and apoptosis. Cell 77, 477,478.

    Google Scholar 

  23. Jeso, B. D., Ulianich, L., Racioppi, L., D’Armiento, F., Feliciello, A., Pacifico, F., Consiglio, E., and Fromisano, S. (1995) Serum withdrawal induced apoptotic cell death in K1-Ras transformed but not normal differentiated thyroid cells. Biochem. Biophys. Res. Commun. 214, 819–824.

    Article  Google Scholar 

  24. Curling, E. M., Hayter, P. M., Baines, A. J., Bull, A. T., Gull, K., Strange, P. G., and Jenkins, N. (1990) Recombinant human interferon-: differences in glycosylation and proteolytic processing lead to heterogeneity in batch culture. Biochem. J. 272, 333–337.

    CAS  Google Scholar 

  25. Watson, E., Shoh, B., Leiderman, L. Hsu, Y.-R., Lu, H. S., and Lin, F.-K. (1994) Comparison of N-linked oligosaccharides of recombinant human tissue kallikrein produced by Chinese hamster ovary cells in microcarriers and in serum-free suspension culture. Biotechnol. Prog. 10, 39–44.

    Article  CAS  Google Scholar 

  26. Chotigeat, W., Watanapokasin, Y., Mahler, S., and Gray, P. P. (1994) Role of environmental conditions on the expression levels, glycoform pattern and levels of sialyltransferase for hFSH produced by recombinant CHO cells. Cytotechnology 15, 217–221.

    Article  CAS  Google Scholar 

  27. Lifely, M. R., Hale, C., Boyce, S., Keen, M. J., and Phillips, J. (1995) Glycosylation and biological activity of CAMPATH-1H expressed in different cell lines and grown under different culture conditions. Glycobiology 5, 813–822.

    Article  CAS  Google Scholar 

  28. Jenkins, N., Parekh, R. B., and James, D. C. (1996) Getting the glycosylation right: implications for the biotechnology industry. Nature Biotechnol. 14, 975–981.

    Article  CAS  Google Scholar 

  29. Gawlitzek, M., Valley, U., Nimtz, M., Wagner, R., and Conradt, H. S. (1995) Characterization of changes in the glycosylation pattern of recombinant proteins from BHK-21 cells due to different culture conditions. J. Biotechnol. 42, 117–131.

    Article  CAS  Google Scholar 

  30. Ozturk, S. S. and Palsson, B. O. (1991) Physiological changes during the adaptation of hybridoma cells to low serum and serum-free media. Biotechnol. Bioeng. 37, 35–46.

    Article  CAS  Google Scholar 

  31. Barnes, D. and Sato, G. (1980) Methods for growth of cultured cells in serum-free medium. Anal. Biochem. 102, 255–270.

    Article  CAS  Google Scholar 

  32. Merten, Q.-W., Kierulff, J. V., Castignolles, N., and Perrin, P. (1994) Evaluation of the new serum-free medium (MDSS2) for the production of different biologicals: use of various cell lines. Cytotechnology 14, 47–59.

    Article  CAS  Google Scholar 

  33. Radford, K., Niloperbowo, W., Reid, S., and Greenfield, P. F. (1991) Weaning of three hybridoma cell lines to serum free low protein medium. Cytotechnology 6, 65–78.

    Article  CAS  Google Scholar 

  34. Qi, Y. M., Greenfield, P. F., and Reid, S. (1996) Evaluation of a simple protein free medium that supports high levels of monoclonal antibody production. Cytotechnology 21, 95–109.

    Article  CAS  Google Scholar 

  35. Chang, T. H., Steplewski, Z., and Koprowski, H. (1980) Production of monoclonal antibodies in serum-free medium. J. Immunol. Methods 39, 369–375.

    Article  CAS  Google Scholar 

  36. Merten, O.-W., Petres, S., and Couve, E. (1995) A simple serum-free freezing medium for serum-free cultured cells. Biologicals 23, 185–189.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Sinacore, M.S., Drapeau, D., Adamson, S.R. (1999). Adaptation of Mammalian Cells to Growth in Serum-Free Media. In: Jenkins, N. (eds) Animal Cell Biotechnology. Methods in Biotechnologyâ„¢, vol 8. Humana Press. https://doi.org/10.1385/0-89603-547-6:11

Download citation

  • DOI: https://doi.org/10.1385/0-89603-547-6:11

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-547-8

  • Online ISBN: 978-1-59259-486-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics