Skip to main content

Immunosensors Based on Piezoelectric Crystal Device

  • Protocol

Part of the book series: Methods in Biotechnology ((MIBT,volume 7))

Abstract

New recent developments in engineering have improved transducer piezoelectric technology and have led to a new generation of sensor devices, the piezoelectric microbalances, based on planar microfabrication technique. These devices show a very high sensitivity (up to femtomole) for detecting molecules that are linked to the surface of the device and change its resonant frequency. A sensor surface can be coated selectively for interaction with a specific chemical or class of chemical or a biomolecule to be detected. Applications in medicine, environmental monitoring, food analysis, and process control are possible. Most of the applications employ bulk acoustic waves (BAW) devices, using a selective coating for the analyte of interest.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ward, M. D. and Buttry, D. A. (1990) In situ interfacial mass detection with piezoelectric transducer. Science 249, 1000.

    Article  PubMed  CAS  Google Scholar 

  2. Luong, J. H. T. and Guilbault, G. G. (1991) Analytical applications of piezoelectric crystal biosensor, in Biosensor Principles and Applications (Blum, L. J. and Coulet, P. R., eds.), Marcel Dekker, New York, p. 107.

    Google Scholar 

  3. Sauerbrey, G. Z. (1959) Use of quartz vibrator for weighing thin films on a microbalance. Z. Phys 115, 205.

    Google Scholar 

  4. Dunham, G. C, Benson, N. H., Petelenz, D., and Janata, J. (1995) Dual quartz crystal microbalance. Anal. Chem. 67, 267.

    Article  CAS  Google Scholar 

  5. Kanasawa, K. K. and Gordon, J. G. (1985) Frequency of a quartz microbalance in contact with liquid. Anal. Chem. 57, 1771.

    Article  Google Scholar 

  6. Kurosawa, S., Tawara, E., Kamo, N., and Kobatake, Y. (1990) Oscillating frequency of piezoelectric quartz crystal in solutions. Anal. Chim. Acta 230, 41.

    Article  CAS  Google Scholar 

  7. Bruckenstein, S. and Shay, M (1994) Dual quartz crystal oscillator circuit-minimizing effect due to liquid viscosity, density, and temperature. Anal Chem 66, 1847.

    Article  CAS  Google Scholar 

  8. Thompson, M., Kipling, A. L., Duncan-Hewitt, W C, Rajakovic, L V, and Cavic-Vlasak, B A. (1991) Thickness-shear-mode acoustic wave sensor in the liquid phase · a review Analyst 116, 881.

    Article  CAS  Google Scholar 

  9. Thompson, M., Artur, C. L., and Dhaliwal, G K. (1986) Liquid phase piezoelectric and acoustic transmission studies on interfacial immunochemistry. Anal Chem 58, 1206.

    Article  PubMed  CAS  Google Scholar 

  10. Ghourchian, M. O. and Kamo, N. (1995) New detection cell for piezoelectric quartz crystal · frequency changes strictly follow Bruckenstein and Shay’s equation in very dilute non-electrolyte aqueous solution Analyst 120, 2737

    Article  CAS  Google Scholar 

  11. Weetall, H. H., ed. (1995) Immobilized Enzymes, Antigens, Antibodies, and Peptides—Preparation and Characterization, vol. 1. Marcel Dekker, New York

    Google Scholar 

  12. Davis, K. A. and Leary, T. (1989) Continuous liquid phase piezoelectric biosensor for kinetic immunoassay. Anal Chem. 61, 1227.

    Article  PubMed  CAS  Google Scholar 

  13. Starzi, S., Santori, T., Minunni, M., and Mascini, M. (1998) Surface modifications for the development of piezoimmunosensors. Bios Biol, in press

    Google Scholar 

  14. Minunni, M., Mascini, M., Carter, R. M., Jacobs, M. B., Lubrano, G. J, and Guilbault, G. G(1996) A quartz crystal microbalance displacement assay for listeria monocytogenes Anal Chim Acta 325, 169.

    Article  CAS  Google Scholar 

  15. Nieba, L., Krebber, A., and Plukthun, A. (1996) Competition BIAcore for measuring true affinities large differences from values determined from binding kinetic. Anal Biochem 234, 155–165.

    Article  PubMed  CAS  Google Scholar 

  16. Kosslinger, C, Drost, S., Aberl, A., Wolf, H., Brink, G., Stangmaler, A, and Sackmann, E. (1994) Comparison of the QCM and SPR method for surface studies and immunological applications. International Conference on Chemical Sensors, Rome, Italy.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc.

About this protocol

Cite this protocol

Mascini, M., Minunni, M., Guilbault, G.G., Carter, R. (1998). Immunosensors Based on Piezoelectric Crystal Device. In: Rogers, K.R., Mulchandani, A. (eds) Affinity Biosensors. Methods in Biotechnology, vol 7. Humana Press. https://doi.org/10.1385/0-89603-539-5:55

Download citation

  • DOI: https://doi.org/10.1385/0-89603-539-5:55

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-539-3

  • Online ISBN: 978-1-59259-485-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics