Advertisement

Receptor biosensors based on optical detection

  • Kim R. Rogers
  • Mohyee E. Eldefrawi
Part of the Methods in Biotechnology book series (MIBT, volume 7)

Abstract

Neurotransmitter and hormone receptors serve as biosensors for specific chemical signals ranging from low-mol-wt compounds to complex polypeptides. On binding of the target transmitter or hormone, signal amplification and transduction in biologic systems occurs via a variety of mechanisms, ranging from depolarization of neural membrane, G protein-linked synthesis of second messengers, to activation or inhibition of expression of target genes. The combination of these sensitive and specific sensing receptor proteins with electrochemical, optical, and acoustic technologies to form analytical devices is an attractive concept. These receptor-based biosensors could potentially find applications in the medical, diagnostics, food, military, and environmental areas.

Keywords

Electric Organ Quartz Fiber Total Internal Reflectance Fluorescence Ultracentrifuge Tube Radioactive Ligand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Rogers, K. R., Valdes, J. J., and Eldefrawi, M E. (1989) Acetylcholine receptor fiber-optic evanescent fluorosensor Anal. Biochem. 182, 353–359.PubMedCrossRefGoogle Scholar
  2. 2.
    Ward, L. D., Hewlett, G. J., Hammacher, A., Weinstock, J., Yasukawa, K., Simpson, R. J., and Winzor, D. J. (1995) Use of a biosensor with surface plasmon resonance detection for the determination of binding constants: measurement of interleukm-6 binding to the soluble interleukin-6 receptor. Biochemistry 34, 2901–2907.PubMedCrossRefGoogle Scholar
  3. 3.
    Raghavan M., Wang, Y. P., and Bjorkman, P. J. (1995) Effects of receptor dimerization on the interaction between the class 1 major histocompatibility complex-related FC receptor and IgG. Proc Natl. Acad Sci USA 94, 11,200–11,204CrossRefGoogle Scholar
  4. 4.
    Buch, R. M. and Rechnitz, G. A. (1989) Intact chemoreceptor-based biosensors: responses and analytical limits. Biosensors 4, 215–230.CrossRefGoogle Scholar
  5. 5.
    Eray, M., Dogan, N. S., Reiken, S. R., Sutisna, H., Vanwei, B. J., Koch, A. R., Moffett, D. F., Silber, M., and Davis, W. C. (1995) A highly stable and selective biosensor using modified nicotinic acetylcholine receptor (nAChR). Biosystems 35, 183–188.PubMedCrossRefGoogle Scholar
  6. 6.
    Nikolelis, D. P., Brennan, J. D., Brown, R. S., McGibbon, G., and Krull, U. J. (1991) Ion permeability through bilayer lipid membranes for biosensor development: control by chemical modification of interfacial regions between phase domains Analyst 116, 1221–1226.PubMedCrossRefGoogle Scholar
  7. 7.
    Taylor, R. F., Marenchic, I. G., and Cook, E. J. (1988) An acetylcholine receptor-based biosensor for the detection of chohnergic agents. Anal. Chim Acta 213, 131–138.CrossRefGoogle Scholar
  8. 8.
    Rogers, K. R., Valdes, J. J., and Eldefrawi, M. E. (1991) Effects of receptor concentration, media pH and storage on the nicotinic receptor-transmitted signal in a fiber-optic biosensor. Biosens. Bioelectron. 6, 1–8PubMedCrossRefGoogle Scholar
  9. 9.
    Rogers, K. R., Valdes, J J., Menking, D., Thompson, R., and Eldefrawi M. E (1991) Pharmacologic specificity of an acetylcholine receptor fiber-optic biosensor. Biosens. Bioelectron. 6, 507–516.PubMedCrossRefGoogle Scholar
  10. 10.
    Eldefrawi, M. E., and Eldefrawi, A. T. (1973) Purification and molecular properties of the acetylcholine receptor from torpedo electroplax. Arch. Biochem Biophys. 159, 362–373.PubMedCrossRefGoogle Scholar
  11. 11.
    Kohanski, R. A., Andrews, J. P., Wins, P., Eldefrawi, M E., and Hess, G P (1977) A simple quantitative assay of 125i-bungarotoxin binding to soluble and membrane-bound acetylcholine receptor protein. Anal. Biochem 80, 531–539.PubMedCrossRefGoogle Scholar
  12. 12.
    March, S. C, Parikh, I., and Cuatrecasas, P. (1974) A simplified method for cyanogen bromide activation of agarose for affinity chromatography Anal. Biochem. 60, 149–152.PubMedCrossRefGoogle Scholar
  13. 13.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R J. (1951) Protein measurement with folin phenol reagent. J. Bwl Chem. 193, 265–275.Google Scholar
  14. 14.
    Rogers, K. R., Fernando, J. C, Thompson, R. J., Valdes, J J., and Eldefrawi, M. E. (1992) Detection of nicotinic receptor ligands with a light addressable potentiometric sensor. Anal Biochem. 202, 111–116.PubMedCrossRefGoogle Scholar
  15. 15.
    Conti-Tronconi, B., Tzartos, S., and Lindstrom, J (1981) Monoclonal antibodies probes of acetylcholine receptor structure 2. Binding to native receptor. Biochemistry 20, 2181–2191.PubMedCrossRefGoogle Scholar
  16. 16.
    Bhatia, S. K, Shriver-Lake, L C, Prior, K. J., Georges, J. H., Calvert, J. M., Bredehorst, R., and Ligler, F. S. (1989) Use of thiol-terminal silanes and heterobifunctional crosslinkers for immobilization of antibodies on silica surfaces. Anal Biochem 178, 408–413.PubMedCrossRefGoogle Scholar
  17. 17.
    Alarie, J. and Sepaniak, M. (1990) Evaluation of antibody immobilization techniques for fiber optic-based fluoroimmunosensing. Anal Chim. Acta 229, 169–176.CrossRefGoogle Scholar
  18. 18.
    Devine, P J., Anis, N. A., Wright, J., Kim, S., Eldefrawi, A T., and Eldefrawi, M E. (1995) A fiber optic cocaine biosensor. Anal. Biochem 227, 216–224.PubMedCrossRefGoogle Scholar
  19. 19.
    Colbert, D. L., Gallacher, G., and Mainwanng-Burton, R. W. (1985) Single reagent polarization fluoroimmunoassay for amphetamine in urine. Clin. Chem 31, 1193–1195.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1998

Authors and Affiliations

  • Kim R. Rogers
    • 1
  • Mohyee E. Eldefrawi
    • 2
  1. 1.US Environmental Protection AgencyLas Vegas
  2. 2.Department of Pharmacology and Experimental TherapeuticsUniversity of Maryland School of MedicineBaltimore

Personalised recommendations